matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikTschebyscheff
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Tschebyscheff
Tschebyscheff < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Mi 04.02.2015
Autor: Alex1993

Hallo,
ich habe heute meine Stochastik 1 Klausur geschrieben und denke jetzt noch etwas über die Lösung nach.
In einer Aufgabe ging es um eine exponentialverteilte Zufallsvariable X mit Parameter [mm] \lamda=0,035. [/mm] Es ging weiter um ein Blitzgerät, dass in einer 30-er Zone aufgestellt wird. Ab einer Überschreitung von 10 Prozent: also hier größer 33 löst der Blitzer aus. Nun sollte die Wahrscheinlicheit bestimmt werden, dass der Blitzer auslöst. Ich habe sofort an Tschebyscheff gedacht und den Erwartungswert sowie die Varianz der obigen Exponentialverteilung bestimmt und damit P(X [mm] \ge [/mm] 33) abgeschätzt. Ich kam allerdings zu keinem vernünftigen Ergebnis..und es ist ja dann dennoch auch nur eine Abschätzung und kein fester wert. Was könnte also hier gefragt gewesen sein?


Lg

        
Bezug
Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Mi 04.02.2015
Autor: huddel

Hey Alex1993,

Ich habe eine Theorie, warum das bei dir schief gelaufen sein könnte, aber kannst du mir vorher grad nochmal sagen, wie ihr die Dichte der Exponentialverteilung genau definiert habt?

Was eigentlich gefragt war, war das Integral:

[mm] $\integral_{33}^{\infty} f_\lambda(x) [/mm] dx$

wobei [mm] $f_\lambda(x)$ [/mm] grad deine Dichte ist.

Also alles was über 33 km/h liegt aufintegriert.

Bezug
                
Bezug
Tschebyscheff: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:38 Mi 04.02.2015
Autor: Alex1993

Hey
mich wundert es nur, da wir diese Art von Integration der Dichte in solch einem Zusammenhang nie hatten. danke, ich glaube ich verstehe nun, was gemeint ist. Allerdings frage ich mich, warum hier die Tschebyscheff Ungleichung nicht funktioniert?

LG

Bezug
                        
Bezug
Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Mi 04.02.2015
Autor: huddel

Deine Idee it Tschebyscheff an sich war garnicht so schlecht. Jedoch schätzt Tschebyscheff Abweichungen vom Erwartungswert in beide Richtungen ab und nicht nur in eine. Das ist der erste Fehler.

Der zweite, wahrscheinlich wichtigere ist folgender:

ich gehe mal davon aus, dass ihr die Dichte der Exp-Verteilung zum Parameter [mm] $\lambda$ [/mm] für $x [mm] \geq [/mm] 0$ also [mm] $f_\lambda(x) [/mm] = [mm] \lambda e^{-\lambda x}$ [/mm] definiert habt. für [mm] $\lambda [/mm] =0.035$ ergibt sich hierraus ein Erwartungswert von [mm] $\frac{1}{\lambda} \cong [/mm] 28,57$ und eine Varianz von [mm] $\frac{1}{\lambda^2} \cong [/mm] 816,32$ und damit ne Standardabweichung von [mm] $\sigma \cong \sqrt{816,32} \cong [/mm] 28,57$. Nun hast du eine Abweichung vom Erwartungswert von 5 km/h untersucht, jedoch funktioniert Tschebyscheff erst ab einer Abweichung von [mm] $\sigma$ [/mm] vorher kommen nur trivialitäten raus. Ich gehe mal davon aus, dass genau das bei dir passier ist, oder? :)

Bezug
        
Bezug
Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 01:55 Do 05.02.2015
Autor: DieAcht

Hallo Alex1993!


Sei [mm] X\sim\text{Exp}(\lambda) [/mm] mit [mm] \lambda=0.035, [/mm] dann gilt:

      [mm] P(X\ge 33)=1-P(X\le 33)=1-(1-e^{-33\lambda})=e^{-33\lambda}=e^{-33*0.035}. [/mm]

(Allgemein: Überlebensfunktion.)


Gruß
DieAcht



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]