matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Tschebyscheff
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - Tschebyscheff
Tschebyscheff < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheff: Vorzeichen
Status: (Frage) beantwortet Status 
Datum: 01:48 Sa 08.12.2007
Autor: Waldifee

Aufgabe
Ein Experte sagt Ihnen, dass der Wet einer Aktie (Wertänderung = Zufallsgröße X) zum Ende des Jahres wahrscheinlich 5 € über dem heutigen Wert liegen wird. Dies ist allerdings nur der Mittelwert seiner Schätzung. Außerdem geht er davon aus, dass der Aktienkurs mit maximal einprozentiger Wahrscheinlichkeit um mahr als 20 € fallen wird.

Zu welcher Schlussfolgerung über die Varianz kommen Sie, wenn Sie die Aussagen des Experten für wahr halten? Verwenden Sie die Ungleichung von Tschebyscheff!

Welches Vorzeichen stimmt?

Mittelwert = Erwartungswert
--> E(X)=5

P(|X-5| [mm] \ge [/mm] 25) [mm] \le [/mm] .01
P(|X-5| [mm] \ge [/mm] 25) [mm] \le Var(x)/25^2 [/mm] = .01

-> weil es heißt [mm] Var(x)/25^2 [/mm] = .01 gilt doch Var(X) = 6.25
Oder wäre es nicht sinnvoller zu sagen Var(X) [mm] \le [/mm] 6.25, denn die Wahrscheinlichkeit ist ja maximal 1 Prozent, kann ja aber auch kleiner werden?
Oder muss ich die 1 Prozent mindestens einschließen und sogar sagen
Var(X) [mm] \ge [/mm] 6.25

Ich betrachte Var(X) [mm] \le [/mm] 6.25 am sinnvollsten, was denkt ihr?


Danke im Voraus für eure lieben Antworten!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 02:52 Sa 08.12.2007
Autor: Zneques

Hallo,

die Ungleichung von Tschebyscheff liefert eine untere Grenze für Var(X).
(Man könnte erfahren, dass der Wert, um den die Aktie zu ein Prozent fällt, gegen [mm] \infty [/mm] geht. Somit hätte man eine unendlich große Varianz. )

D.h. 6,25 [mm] \le [/mm] Var(X) ist richtig

Wenn man nun jedoch das "maximal" wörtlich nimmt, müsste man stattdessen
[mm] P(|X-5|\ge 25)=0.01-c\le [/mm] 0.01 für [mm] 0\le c\le [/mm] 0.01 schreiben.
[mm] \Rightarrow 6,25-625*c\le [/mm] Var(x)
Dann ist Var(X) also größer als eine [mm] Zahl\le [/mm] 6,25.
Bzw. Var(X) ist größer oder kleiner 6,25. :)

Ciao.

Bezug
                
Bezug
Tschebyscheff: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:21 Sa 08.12.2007
Autor: Waldifee

Wäre das jetzt eine Multiple Multiple Choice, was würde ich den ankreuzen?

Var(x) [mm] \ge [/mm] 6.25
Var(x) [mm] \le [/mm] 6.25
Var(x) = 6.25
Es ist keine sinnvolle Aussage +ber die Varianz möglich!

DANKE!!!

Bezug
                        
Bezug
Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Sa 08.12.2007
Autor: Zneques

Hallo,
Das die Varianz größer als eine Zahl ist, die 0 sein könnte (also [mm] 0\le [/mm] Var(x) ) hätte man auch ohne Expertentipp gewußt. Nach der Aussage ist somit, im Bezug auf die Varianz, nicht mehr bekannt als vorher.

Ciao

Bezug
                                
Bezug
Tschebyscheff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Sa 08.12.2007
Autor: Waldifee

Hallo nochmal!

also, ich bin zu dem Schluss gekommen, dass eigentlich keine sinnvolle Aussage über die Varianz zu treffen ist:
1. wenn ich richtigerweise [mm] P(|X-E(X)|\ge25)\le0.01 [/mm] eingebe und var(X)/25² mit 0.01 gleichsetze, kann ich logischerweise var(X)=6.25 folgern.
2. wenn ich hingegen, ebenfalls sinnvollerweise, das "maximal" dahingehend auslege, dass P(|X-....) schon [mm] \le0.01 [/mm] ist, und demzufolge, [mm] \le0.01 \le [/mm] var(X)/c², und nun die var(X) berechne, erhalte ich [mm] var(X)\ge [/mm] 6.25.
3. wenn ich aber den Term [mm] \le [/mm] , also "maximal" richtig einstufe und entsprechend auch kleinere Werte für P() eingebe, erhalte ich stehts ein Ergebnis mit var(X) [mm] \ge [/mm] immer kleiner werdende Zahlen, maximal jedoch 6.25, was mich wiederum zu dem Schluss kommen lassen kann, dass [mm] var(X)\le6.25 [/mm] ist.

Insofern, und dies ist auch eine Antwortmöglichkeit, würde ich darauf schließen, dass keine sinnhafte Aussage zu treffen ist.

Was sagts Du dazu? Freue mich auf deine Antwort, ich hoffe Du verstehst was ich meine =)

Bezug
                                        
Bezug
Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 02:56 So 09.12.2007
Autor: Zneques

Hallo,

bei 1. wolltest du sicher [mm] P(|X-E(X)|\ge25)=0.01 [/mm] schreiben. Abgesehen davon würde Tschebyscheff trotzdem nur zu der Ungleichung [mm] Var(X)\ge [/mm] 6.25 führen. (es ist einfach zu wenig über X bekannt um die Varianz exakt zu bestimmen)
das Ende von 3. könnte man in "...kann, dass [mm] Var(X)\le6.25 [/mm] sein kann." umformulieren.
Die Schlussfolgerung ist völlig ok so.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]