Tschebyscheff Polynome < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:20 Mi 02.03.2005 | Autor: | Dude1981 |
hallo,
kann mir jemand erklären wie man auf Tschebyscheff Polynome kommt. Ich kenne den Zweck von Tschebyscheff Polynomen, aber wieso sie funktionieren weiss ich nicht. Die Einführung unseres Profs von Tschebyscheff Polynomen ist etwas grob. Von einer Gewichtsfunktion und die dadurch induzierte Norm kommt er auf Orthogonalpolynome die einer Rekursion genügen, ebenso wie Tschebyscheff Polynome aber wo ist der Zusammenhang und wieso minimieren solche Polynome den Fehler bei der Interpolation?
Gedankenkette reicht.
Danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
warum sie die Fehler minimieren:
Beim Ansatz ein Interpolationspolynom für n Stützstellen (äquidistant) zu bilden ist offensichtlich, dass der Fehler zwischen den Knoten immer größer wird,
je näher man dem Rand des Intervalls der Stützstellen kommt, einfach weil ja die Polynome immer welliger werden (etwas salopp).
Nun kann man die Punkte am Rand enger wählen (also nicht äquidistant), um die Ausschläge zu reduzieren und nimmt dafür in der Mitte des Intervalls in Kauf, dass sich der Fehler zwischen den Stützstellen erhöht.
Nun ist noch nicht klar, wie man "nicht äquidistant" die Stützstellen wählen muss um den Fehler zu minimieren. Wie die nun auf die Tschebyscheff Stützstellen gekommen sind, weiß ich auch nicht, sondern nur, dass sie
optimal sind.
Gruß
marthasmith
|
|
|
|
|
habe zu schnell auf senden geklickt, ohne unten auf "Teilantwort" zu ändern.
Es gibt noch offene Fragen in dem obigen Artikel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:30 Fr 04.03.2005 | Autor: | epee |
Hallo,
zuerst schauen wir uns mal den Interploationsfehler an:
[mm] f_{(x)} [/mm] - [mm] p_{(x)} [/mm] = [mm] \bruch{ f^{n+1}}{(n+1)!} *w_{(x)}
[/mm]
Aus der Formel wird ersichtlich, dass sich der Fehler ( außer durch die Anzahl der Stützstellen) nur durch die Wahl des Polynom [mm] w_{(x)} [/mm] beeinflussen lässt. Das Polynom [mm] w_{(x)} [/mm] (Knotenpolynom), welches sich aus der Wahl der Stützstellen ergibt, so zu wählen, dass die Amplitude im Interpolationsintervall minimal wird. Die Teschebyscheff Polynome haben diese Eigenschaft.
Tschebyscheff Polynom:
[mm] T_{(x)} [/mm] = cos(n * arcos(x) ) für alle n [mm] \ge [/mm] 0
Geht nur, wenn man auf die Lage der Knoten Einfluss nehemen kann, dann ist diese Interpolation in Tschebyscheff Knoten eine gute Wahl, falls die Aufgabe lautet "Approximation durch Interpolation".
Ich hoffe es hat geholfen.
Alles Gute,
epee.
|
|
|
|