matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKomplexität & BerechenbarkeitTuring-Reduktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Komplexität & Berechenbarkeit" - Turing-Reduktion
Turing-Reduktion < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Turing-Reduktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:08 Di 30.05.2017
Autor: MiguelVal

Aufgabe
Zeigen Sie mithilfe einer Turing-Reduktion, dass die Sprache Ap = {<M> : M entscheidet P} nicht rekursiv ist, wobei P = { x [mm] \in [/mm] {0,1}* : val(x) ist eine Primzahl} die Menge aller Primzahlen (in Binärkodierung) ist.

Ja, ich muss gestehen, dass ich nicht weiß wie ich weiter komme. Mithilfe Turing-Reduktion bedeutet ich nehme an, es die genannte Sprache ist rekursiv, also existiert eine Turingmaschine (TM) M,  die diese Sprache entscheidet. M soll dann wohl so modifiziert werden, dass dann auch eine andere Sprache, von der bekannt ist, dass sie nicht entscheidbar ist, entscheidbar wäre. Das ist dann der Widerspruch, komme aber nicht weiter....

        
Bezug
Turing-Reduktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Do 01.06.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]