matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUmformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Umformung
Umformung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Erklärung?
Status: (Frage) beantwortet Status 
Datum: 10:06 So 26.10.2008
Autor: ichonline

Guten Morgen,

[mm] \integral_{}^{}{1/(1+cos²(x/2)) dx} [/mm]

ich bearbeite gerade ein paar Matheaufgaben und habe auch die Lösungen dazu.
Bei der Aufgabe ging es darum, das Integral zu bilden mit Substitution.

Substituion:
x=2arctan(t)

....Rechnung....man erhält:

[mm] \integral_{}^{}{(2/(2+t²) dt} [/mm]

Aber wie kommt man darauf, dass das Integral von 2/(2+t²) = [mm] 2/\wurzel{2} [/mm] * [mm] arctan(t/\wurzel{2}) [/mm] ist.  


und meine zweite Frage.
wenn man nun zurücksubstituieren will, dann muss man ja t einsetzen.
[mm] 2/\wurzel{2}*arctan(tan(x/2)/ \wurzel{2} [/mm]
wie kommt man denn auf tan(x/2).

Wäre echt toll, wenn mir jemand das erklären könnte.

Grüße
         ichonline


        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 So 26.10.2008
Autor: schachuzipus

Hallo ichonline,

> Guten Morgen,
>  
> [mm]\integral_{}^{}{1/(1+cos²(x/2)) dx}[/mm]
>  
> ich bearbeite gerade ein paar Matheaufgaben und habe auch
> die Lösungen dazu.
>  Bei der Aufgabe ging es darum, das Integral zu bilden mit
> Substitution.
>  
> Substituion:
>  x=2arctan(t)
>  
> ....Rechnung....man erhält:
>  
> [mm]\integral_{}^{}{(2/(2+t²) dt}[/mm] [kopfkratz3]

ich komme mit der oben erwähnten Substitution auf [mm] $\int{\frac{2}{(1+t^2)^2} \ dt}$ [/mm]

>  
> Aber wie kommt man darauf, dass das Integral von 2/(2+t²) =
> [mm]2/\wurzel{2}[/mm] * [mm]arctan(t/\wurzel{2})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

ist.  

Klammere im Nenner 2 aus: $\int{\frac{2}{2+t^2} \ dt}=\int{\frac{2}{2\left(1+\left(\frac{t}{\sqrt{2}\right)^2\right)} \ dt}=\int{\frac{1}{1+\left(\frac{t}{\sqrt{2}\right)^2} \ dt$

Und hier siehst du es entweder oder du substituierst $u:=\frac{t}{\sqrt{2}}$

>
> und meine zweite Frage.
>  wenn man nun zurücksubstituieren will, dann muss man ja t
> einsetzen.
> [mm]2/\wurzel{2}*arctan(tan(x/2)/ \wurzel{2}[/mm]
>  wie kommt man
> denn auf tan(x/2).

Mit der Substitution [mm] $x=2\arctan(t)$ [/mm] ist [mm] $\frac{x}{2}=\arctan(t)$ [/mm] Nun auf beiden Seiten [mm] $\tan$ [/mm] anwenden:

[mm] $\Rightarrow \tan\left(\frac{x}{2}\right)=t$ [/mm]


Aber es ist irgendwie nicht stimmig, denn dein Ergebnis der Umrechnung nach der Substitution stimmt nicht, es kommt schlussendlich eine ziemlich hässliche Stammfunktion heraus:

[mm] $\int{\frac{1}{1+\cos^2\left(\frac{x}{2}\right)} \ dx}=\frac{x}{\sqrt{2}}-\sqrt{2}\arctan\left(\frac{\sin(x)}{\cos(x)+2\sqrt{2}+3}\right)$ [/mm]

Das sagt zumindest DERIVE ;-)

> Wäre echt toll, wenn mir jemand das erklären könnte.
>  
> Grüße
>           ichonline
>  


LG

schachuzipus

Bezug
                
Bezug
Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 So 26.10.2008
Autor: ichonline

okay erstmal danke schön:)
also ist der tan(arctan(t))=t?
wahrscheinlich weil der arctan die Umkerhfunktion des tan ist, oder?

hm ja mit derive 6 komme ich auch auf ein anderes ergebniss.

grüße Julia

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]