matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Umformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Umformung
Umformung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:57 Do 11.11.2010
Autor: SolRakt

Hallo.

Man hat folgende Aussage A(n):

[mm] (1+a)^{x} \le [/mm] 1+ [mm] a^{x} [/mm]

a  [mm] \varepsilon \IR+ [/mm] und x [mm] \varepsilon [/mm] [0,1]

Die Richtigkeit der Aussage soll gezeigt werden.

So, für a = 0 ist das ja erfüllt.

Der zweite Fall wäre also a > 0.

Da sollen wir folgende Ungleichung verwenden:

(1 + [mm] \bruch{1}{a})^{x} \le [/mm] 1 + [mm] \bruch{x}{a} [/mm]

Von dieser Ungleichung soll man nun auf die andere schließen. Kann mir da jemand helfen? Kriege diese Umformung nicht hin. Danke sehr.

        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Do 11.11.2010
Autor: reverend

Hallo SolRakt,

ich finde den Tipp etwas unglücklich.
Es geht hier darum, die []Bernoullische Ungleichung gewinnbringend anzuwenden.

Beachte, dass in Deiner Aufgabe x einem sehr beschränkten Intervall entstammt und dass [mm] \tfrac{1}{x}>0 [/mm] ist.

Grüße
reverend


Bezug
                
Bezug
Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Do 11.11.2010
Autor: SolRakt

Das Problem ist, dass wir das mit dem Hinweis machen sollen :(
Geht das denn nicht?

Bezug
                        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Do 11.11.2010
Autor: reverend

Doch, das geht auch, aber eigene Lösungen sind immer besser. ;-)

Es gibt sicher ein bisschen zu basteln, und ein paar Versuche, bis man auf den Weg kommt. Aber ist das nicht gerade das Reizvolle an Mathematik? Tipps hast Du jetzt bestimmt genug.

Der Kern liegt oft im Erkennen eines Prinzips. Lass Dich nicht verwirren, wenn die Variablen gerade anders heißen, oder noch schlimmer: fast genauso wie in der vorliegenden Formel.

Es ist bestimmt viel besser, wenn Du selbst drauf kommst.

Grüße
reverend


Bezug
                                
Bezug
Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Do 11.11.2010
Autor: SolRakt

Hmm..normalerweise würde ich dir sogar zustimmen, aber ich sitze da jetzt schon Stunden dran und komme einfach nicht weiter. Ich finde einfach keinen Weg, das umzuformen

Bezug
        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Do 11.11.2010
Autor: abakus


> Hallo.
>  
> Man hat folgende Aussage A(n):
>  
> [mm](1+a)^{x} \le[/mm] 1+ [mm]a^{x}[/mm]
>  
> a  [mm]\varepsilon \IR+[/mm] und x [mm]\varepsilon[/mm] [0,1]
>  
> Die Richtigkeit der Aussage soll gezeigt werden.
>  
> So, für a = 0 ist das ja erfüllt.
>  
> Der zweite Fall wäre also a > 0.
>  
> Da sollen wir folgende Ungleichung verwenden:
>  
> (1 + [mm]\bruch{1}{a})^{x} \le[/mm] 1 + [mm]\bruch{x}{a}[/mm]

Diese ist also als bereits bewiesen anzusehen?
Dann würde ich doch glatt den Ausdruck [mm] \bruch{1}{a} [/mm] durch eine Variable b ersetzen.
Gruß Abakus

>  
> Von dieser Ungleichung soll man nun auf die andere
> schließen. Kann mir da jemand helfen? Kriege diese
> Umformung nicht hin. Danke sehr.


Bezug
        
Bezug
Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:28 Fr 12.11.2010
Autor: angela.h.b.


> Hallo.
>  
> Man hat folgende Aussage A(n):
>  
> [mm](1+a)^{x} \le[/mm] 1+ [mm]a^{x}[/mm]


Hallo,

komisch: ich sehe gar kein n in dieser Aussage.
Man hat wohl eher A(x), oder?

>  
> a  [mm]\varepsilon \IR+[/mm] und x [mm]\varepsilon[/mm] [0,1]
>  
> Die Richtigkeit der Aussage soll gezeigt werden.
>  
> So, für a = 0 ist das ja erfüllt.

Für a=0 sollst Du es überhaupt nicht zeigen. Man hätte da ja auch das Problem, daß man sich über [mm] 0^0 [/mm] den Kopf zerbrechen müßte.

>  
> Der zweite Fall wäre also a > 0.
>  
> Da sollen wir folgende Ungleichung verwenden:
>  
> (1 + [mm]\bruch{1}{a})^{x} \le[/mm] 1 + [mm]\bruch{x}{a}[/mm]

>

Die ist bereits gezeigt für [mm] x\in [/mm] [0,1]?
Wenn ja: s. abakus' Hinweis.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]