matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmformung, Additionstheoreme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Umformung, Additionstheoreme
Umformung, Additionstheoreme < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung, Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Di 17.08.2010
Autor: Denny22

Hallo an alle,

ich möchte den folgenden Ausruck

    [mm] $\cos\left(\frac{1}{2}\arccos\left(\frac{\delta}{\sqrt{\delta^2+(c\cdot n)^2}}\right)\right)$ [/mm]

mit

    [mm] $\delta\in\IR$, $\delta>0$, $c\in\IR$, $c\neq [/mm] 0$, [mm] $n\in\IZ$, $-c\cdot n\geqslant [/mm] 0$

so umformen, dass er nur noch von [mm] $\delta$, [/mm] $n$ und $c$ abhängt. Dazu habe ich sämtliche Additionstheoreme bereits verwendet und es gelingt mir einfach nicht. Laut "Maple" sollte die funktionieren, doch wie? Hat jemand eine Idee?

Vielen Dank

Hintergrund:

Ich habe
    
     [mm] $q_n^2=\delta-icn=r_n\cdot e^{i\phi_n}$ [/mm]

mit

     [mm] $r_n=\sqrt{\delta^2+(cn)^2}$ [/mm]

     [mm] $\phi_n=\begin{cases}\arccos\left(\frac{\delta}{r_n}\right) &\text{, }-cn\geqslant 0\\2\pi-\arccos\left(\frac{\delta}{r_n}\right) &\text{, }-cn<0\end{cases}$ [/mm]

wobei

      [mm] $\delta\in\IR$, $\delta>0$, $c\in\IR$, $c\neq [/mm] 0$, [mm] $n\in\IZ$ [/mm]

Ziel: Bestimme diejenigen [mm] $q_n$, [/mm] die die obige Gleichung erfüllen. Für $k=0,1$ erhalte ich

     [mm] $q_n^{(k)}=\sqrt{q_n^2}=\sqrt{r_n}e^{i\frac{\phi_n+2k\pi}{2}}=\sqrt{r_n}e^{i\frac{\phi_n}{2}}e^{ik\pi}=\sqrt{r_n}(-1)^k\left(\cos\left(\frac{\phi_n}{2}\right)+i\sin\left(\frac{\phi_n}{2}\right)\right)$ [/mm]

Oben in meiner Frage habe ich nun den Fall [mm] $-cn\geqslant [/mm] 0$ betrachtet und versuche dabei den Realteil der letzten Formelzeile zu bestimmen.

        
Bezug
Umformung, Additionstheoreme: Halbwinkelformel
Status: (Antwort) fertig Status 
Datum: 20:02 Di 17.08.2010
Autor: Loddar

Hallo Denny!


Verwende hier eine der []Halbwinkelformeln mit:

[mm] $$\cos\left(\bruch{z}{2}\right) [/mm] \ = \ [mm] \pm [/mm] \ [mm] \wurzel{\bruch{1+\cos(z)}{2}}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Umformung, Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Di 17.08.2010
Autor: Denny22

Hey Loddar,

das ging ja so schnell, dass mir die Frage und die viele Zeit, die ich dafür aufgewendet habe, beinahe peinlich ist ;-)

Vielen Dank.

Kurze Rückfrage habe ich aber noch: Wonach richtet sich das Vorzeichen? Wann wird plus und wann minus verwendet?

Bezug
                        
Bezug
Umformung, Additionstheoreme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Di 17.08.2010
Autor: abakus


> Hey Loddar,
>  
> das ging ja so schnell, dass mir die Frage und die viele
> Zeit, die ich dafür aufgewendet habe, beinahe peinlich ist
> ;-)
>  
> Vielen Dank.
>  
> Kurze Rückfrage habe ich aber noch: Wonach richtet sich
> das Vorzeichen? Wann wird plus und wann minus verwendet?

Hallo,
für manche Winkel (welche?) ist der Kosinus nun mal positiv, für andere negativ.
Gruß Abakus


Bezug
                                
Bezug
Umformung, Additionstheoreme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 Mi 18.08.2010
Autor: Denny22

Hallo Abakus,

super, vielen Dank. Jetzt habe ich verstanden.

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]