matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesUmformungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - Umformungen
Umformungen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 So 02.11.2008
Autor: csak1162

x²(1 + 4y) = y²(1 + 4x)

wie zeige ich, dass die gleich sind ich miene wei forme ich dass um, dass nur mehr x = y dahsteht, weiß einfach nicht mehr weiter, bin dankbar für jeden tipp


danke lg

        
Bezug
Umformungen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 22:59 So 02.11.2008
Autor: moody


> [mm] x^2(1 [/mm] + 4y) = [mm] y^2(1 [/mm] + 4x)

[mm] x^2(1 [/mm] + 4y) = [mm] y^2(1 [/mm] + 4x)

kann man umschreiben (ausmultiplizieren)

[mm] x^2 +4x^2 [/mm] y = [mm] y^2 [/mm] + [mm] 4y^2 [/mm] x

umschreiben

[mm] \bruch{x^2}{y^2} [/mm] = [mm] \bruch{4y^2 x}{4x^2 y} [/mm] | * [mm] \bruch{y}{x} [/mm]

[mm] \bruch{yx^2}{xy^2} [/mm] = [mm] \bruch{4y^2 x^2}{4x^2 y^2} [/mm]

[mm] \bruch{yx^2}{xy^2} [/mm] = 1

[mm] \bruch{x}{y} [/mm] = 1

Demnach müssen x und y gleich sein.

Bezug
                
Bezug
Umformungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:00 So 02.11.2008
Autor: csak1162

nein auf einer seite steht da ein y und kein x



Bezug
                        
Bezug
Umformungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 So 02.11.2008
Autor: moody

Ja habs auch grad gesehen, ich ediere meine Antwort von oben, eben.

Bezug
                        
Bezug
Umformungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 So 02.11.2008
Autor: moody

Alternativ könnte man auch sagen wenn x und y gleich sind.

Dann können beide Terme gleichzeitig 0 ergeben.

[mm] x^2 [/mm] (1-4y) = 0

[mm] y^2 [/mm] (1-4x) = 0

Dafür müsste jeweils einer der Faktoren= 0 sein. Die Quadrate können ausser für x,y = 0 nicht 0 werden und sind daher uninteressant.

Betrachten wir (1-4y) = 0 und (1-4x) = 0

Daraus ergibt sich jeweils y = 0.25 und x = 0.25

Also y = x



Bezug
                                
Bezug
Umformungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:29 So 02.11.2008
Autor: steppenhahn

Hallo!

Das ist leider nur ein Spezialfall und kann nicht zur Lösung der Aufgabe beitragen...

Stefan.

Bezug
                
Bezug
Umformungen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 23:02 So 02.11.2008
Autor: Tyskie84

Hallo,

> > [mm]x^2(1[/mm] + 4y) = [mm]y^2(1[/mm] + 4x)
>  
> Das ist eigentlich recht simpel, schau:
>  

na simpel dann doch nicht :-)

> [mm]x^2(1[/mm] + 4y) = [mm]y^2(1[/mm] + 4x)
>  
> Du erkennst sicher, dass auf beiden Seiten [mm]x^2[/mm] und [mm]y^2[/mm]
> jeweils mit dem Term (1 + 4x) multipliziert werden. Du
> kannst also auf beiden Seiten dadurch teilen:
>  
>
> [mm]x^2(1[/mm] + 4y) = [mm]y^2(1[/mm] + 4x) | : (1 + 4x)
>  

[notok]

[mm] (1+4x)/(1+4y)\not=1 [/mm]

> [mm]\gdw[/mm]
>  
> [mm]x^2[/mm] = [mm]y^2[/mm]
>  
> Jetzt ist eigentlich schon klar, dass x und y gleich sind,
> denn:
>  
> [mm]x^2[/mm] = [mm]y^2[/mm] | [mm]\wurzel{}[/mm]
>  
>
> x = y
>  
> Hoffe du konntest das nachvollziehen.
>  

[hut] Gruß

Bezug
                
Bezug
Umformungen: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 23:35 So 02.11.2008
Autor: steppenhahn


> > [mm]x^2(1[/mm] + 4y) = [mm]y^2(1[/mm] + 4x)
>  
> [mm]x^2(1[/mm] + 4y) = [mm]y^2(1[/mm] + 4x)
>  
> kann man umschreiben (ausmultiplizieren)
>  
> [mm]x^2 +4x^2[/mm] y = [mm]y^2[/mm] + [mm]4y^2[/mm] x
>
> umschreiben
>  
> [mm]\bruch{x^2}{y^2}[/mm] = [mm]\bruch{4y^2 x}{4x^2 y}[/mm] | * [mm]\bruch{y}{x}[/mm]


??? Wie hast du denn die Umformung hinbekommen ???
Das ist leider falsch.

Stefan.

> [mm]\bruch{yx^2}{xy^2}[/mm] = [mm]\bruch{4y^2 x^2}{4x^2 y^2}[/mm]
>  
> [mm]\bruch{yx^2}{xy^2}[/mm] = 1
>  
> [mm]\bruch{x}{y}[/mm] = 1
>  
> Demnach müssen x und y gleich sein.

Bezug
                
Bezug
Umformungen: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 23:57 So 02.11.2008
Autor: reverend

Diese Umformungen sind nicht äquivalent!

Bezug
        
Bezug
Umformungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 So 02.11.2008
Autor: steppenhahn

Hallo!

Falls du es ganz exakt haben möchtest:

[mm] $x^{2}*(1+4y) [/mm] = [mm] y^{2}*(1+4x)$ [/mm]

[mm] $\gdw x^{2} +4yx^{2} [/mm] = [mm] y^{2} [/mm] + [mm] 4xy^{2}$ [/mm]

[mm] $\gdw x^{2} +4yx^{2} [/mm] - [mm] y^{2} [/mm] - [mm] 4xy^{2} [/mm] = 0$

[mm] $\gdw (x^{2} [/mm] - [mm] y^{2}) [/mm] + [mm] (4yx^{2} [/mm] - [mm] 4xy^{2}) [/mm] = 0$

[mm] $\gdw [/mm] (x-y)*(x+y) + 4xy*(x - y) = 0$

[mm] $\gdw [/mm] (x-y)*(x+y + 4xy) = 0$

Daraus ergibt sich nun dummerweise aber auch, dass die obige Gleichung auch für $x+y + 4xy = 0$ erfüllt ist; falls du $x,y> 0$ vorausgesetzt hast ergibt sich aber deine Behauptung.

Stefan.

Bezug
                
Bezug
Umformungen: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 00:00 Mo 03.11.2008
Autor: reverend

Das ist vollständig und sauber.
Allerdings muss man noch nachvollziehen, warum unter der Voraussetzung x,y>0 gelten muss: x=y
Trotzdem, vollkommen richtig!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]