matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieUmkehrabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Umkehrabbildung
Umkehrabbildung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrabbildung: Frage ?
Status: (Frage) beantwortet Status 
Datum: 20:00 So 17.12.2006
Autor: Mathmark

Hallo erstmal !!!!

Habe folgende Frage in einem anderen Forum gestellt, aber keine Antwort erhalten:

Sei [mm]C:\mathbb{N}\times\mathbb{N}\to \mathbb{N}[/mm] mit [mm](m,n)\mapsto 2^m(2n+1)[/mm] gegeben.

Zeigen Sie:
1) [mm]C[/mm] ist bijektiv
2) Existiert eine Umkehrabbildung ? Wenn ja, welche ?


So.....zu 1) hab ich die Lösung hinbekommen, was ist aber mit 2) ? Da sie bijektiv ist, existiert eine Umkehrabbildung, aber wie schaut diese aus ?
Ich hab echt keine Idee......
Kann mir einer Helfen....oder einen Tip zu geeigneter Lektüre für dieses Problem liefern ?

Wäre echt Dankbar...Gruß

Mathmark

        
Bezug
Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:31 Mo 18.12.2006
Autor: angela.h.b.


> Hallo erstmal !!!!
>  
> Habe folgende Frage in einem anderen Forum gestellt, aber
> keine Antwort erhalten:
>  
> Sei [mm]C:\mathbb{N}\times\mathbb{N}\to \mathbb{N}[/mm] mit
> [mm](m,n)\mapsto 2^m(2n+1)[/mm] gegeben.
>  
> Zeigen Sie:
>  1) [mm]C[/mm] ist bijektiv

Hallo,

das klappt aber nur, wenn 0 [mm] \in \IN. [/mm]

>  2) Existiert eine Umkehrabbildung ? Wenn ja, welche ?

Die Umkehrabbildung [mm] C^{-1} [/mm] geht von [mm] \IN [/mm] ---> [mm] \IN^2. [/mm]

Erkläre [mm] C^{-1} [/mm] für gerade und ungerade Zahlen getrennt.

k ungerade. Dann gibt es k' mit [mm] k=2k'+1=2^0(2k'+1), [/mm] was Dir [mm] C^{-1}(k):=... [/mm] recht nahelegen sollte.

Für k gerade überlege Dir, daß es k' und k'' gibt mit [mm] k=2^k'(2k''+1) [/mm]  . Da bietet es sih an für gerade k [mm] C^{-1}(k):=... [/mm] zu definieren.

Gruß v. Angela

Bezug
                
Bezug
Umkehrabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:30 Mo 18.12.2006
Autor: Mathmark

Danke erstmal für deine Antwort !

Aber das Problem besteht ja gerade darin, die Umkehrabbildung als ganzes zu betrachten.
Außerdem denke ich, dass man im Falle [mm]k[/mm] gerade wieder vor dem ursprüglichen Problem steht, da [mm]k[/mm] ja dann von [mm]k'[/mm] und [mm]k''[/mm] abhängt.
Entschuldigen möchte ich mich auch für die schwammige Definition.....selbstverständlich gehört die Null dazu. ;-)

Was hälst du von dieser Vermutung:

Sei [mm]C[/mm] wie oben gegeben (mit Null) und sei [mm]k=C(m,n)[/mm] sowie [mm]p=\mbox{max}\{m\in\mathbb{N}:2^m|k\}[/mm] und [mm]q=\mbox{max}\{n\in\mathbb{N}:(2n+1)|k\}[/mm].
Also wäre demnach:
[mm]C^{-1}(k)=(p,q)[/mm]

Bis ich das rausgefunden habe, bin ich fast verzweifelt........mit dem Manko, dass diese Umkehrabbildung kein explizites Ergebnis ist.
Also [mm]k[/mm] ist nicht eindeutig zerlegt.

Geht's vielleicht doch anders ?

Gruß Mathmark

Bezug
                        
Bezug
Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Mo 18.12.2006
Autor: angela.h.b.


>
> Aber das Problem besteht ja gerade darin, die
> Umkehrabbildung als ganzes zu betrachten.

Ich weiß nicht genau, was Du meinst. Störtst Du Dich daran, eine Funktion elementweise zu definieren?
DAS ist kein Problem.

So etwas

[mm] f(n)=\begin{cases} 0, & \mbox{für } n \mbox{ gerade} \\ 1, & \mbox{für } n \mbox{ ungerade} \end{cases} [/mm]

gibt's ja häufig.



>  Außerdem denke ich, dass man im Falle [mm]k[/mm] gerade wieder vor
> dem ursprüglichen Problem steht, da [mm]k[/mm] ja dann von [mm]k'[/mm] und
> [mm]k''[/mm] abhängt.

Nein, k hängt nicht von k' und k'' ab.
Das k wird ja vorgegeben, und k' und k'' müssen zu diesem k passen.

Die Zerlegung in eine Potenz von zwei und eine ungerade Zahl ist eindeutig, was man leicht zeigen kann, und Grund dafür, daß man die Funktion so definieren kann, wie ich es getan habe.

Man kann es ohne Fallunterscheidung auch so machen

[mm] C^{-1}(k)=(k',k'') [/mm]    mit [mm] k=2^{k'}(2k''+1) [/mm]

Für die Wohldefiniertheit müßte man dann zeigen, daß diese Darstellung eindeutig ist.

Deine Definition geht ja in dieselbe Richtung, und sie geht meiner Meinung nach genausogut - wenn auch sie nicht so recht nach meinem Geschmack ist.
Damit sie sinnvoll ist, mußt Du sichern, daß Du nicht das Maximum leerer Mengen suchst. (Nun, das ist einfach: [mm] 2^0 [/mm] und (2*0+1) teilen jede natürliche Zahl.)

> Sei [mm]C[/mm] wie oben gegeben (mit Null) und sei [mm]k=C(m,n)[/mm] sowie
> [mm]p=\mbox{max}\{m\in\mathbb{N}:2^m|k\}[/mm] und
> [mm]q=\mbox{max}\{n\in\mathbb{N}:(2n+1)|k\}[/mm].
>  Also wäre demnach:
>  [mm]C^{-1}(k)=(p,q)[/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]