matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmkehrabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Umkehrabbildung
Umkehrabbildung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrabbildung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:22 Mi 07.11.2007
Autor: Florida86

Aufgabe
Ist die folgende Abbildung injektiv, surjektiv oder bijektiv, geben sie ggf die Umkehrfunktion an!

a) s:  R² -> R², (x,y) -> (x-y, x+y)
b) t: = w°s | {(x,0)|x [mm] \in [/mm] R } mit w gegeben durch w: R²->R, (x,y) -> x²+y²

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also wenn ich früher auf bijektivität untersucht hab, hab ich mir immer den Graph gezeichnet, aber das klappt hier nicht, man bräuchte ja irgendwie  4 Achsen, weil es mehrdimensional ist und dann fällt das veranschaulichen irgendwie weg!
Finde keinen richtigen Zugang zu der Aufgabe.
Vor allem das bilden der Umkehrfunktion?..
Ich würde jetzt irgendwie anfangen auf inketivität zu untersuchen, also [mm] f(x_{1}, y_{1})= (x_{1} [/mm] - [mm] y_{1}, x_{1} [/mm] + [mm] y_{1}) [/mm] = [mm] f(x_{2}, y_{2}) [/mm] =  [mm] (x_{2} [/mm] - [mm] y_{2}, x_{2} [/mm] + [mm] y_{2}) [/mm]

Aber wie beweist bzw rechnet man das mit mehreren Koordinaten?? Und was müsste man bei der surjektivität tun?
Bin hilflos :( Weiß jemand weiter?

Liebe Grüße, Florida86

        
Bezug
Umkehrabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:57 Mi 07.11.2007
Autor: Florida86

niemand ne Idee? Ich sitz schon Stunden daran...

:o(

Lg, Carina

Bezug
        
Bezug
Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:54 Do 08.11.2007
Autor: MatthiasKr

Hi,
> Ist die folgende Abbildung injektiv, surjektiv oder

> mehrdimensional ist und dann fällt das veranschaulichen
> irgendwie weg!
>  Finde keinen richtigen Zugang zu der Aufgabe.
>  Vor allem das bilden der Umkehrfunktion?..
>  Ich würde jetzt irgendwie anfangen auf inketivität zu
> untersuchen, also [mm]f(x_{1}, y_{1})= (x_{1}[/mm] - [mm]y_{1}, x_{1}[/mm] +
> [mm]y_{1})[/mm] = [mm]f(x_{2}, y_{2})[/mm] =  [mm](x_{2}[/mm] - [mm]y_{2}, x_{2}[/mm] + [mm]y_{2})[/mm]
>  
> Aber wie beweist bzw rechnet man das mit mehreren
> Koordinaten?? Und was müsste man bei der surjektivität
> tun?
>  Bin hilflos :( Weiß jemand weiter?
>  
> Liebe Grüße, Florida86

zu aufgabe a): faellt dir auf, dass die abbildung linear ist? das heisst du kannst sie schreiben als multiplikation einer 2x2-matrix mit dem vektor (x,y). Und wie man bei einer linearen abbildung prueft, ob sie bijektiv ist, weisst du, oder? stichwort lineares gleichungssystem. ausserdem sind lin. abb. (in endlichdim. vektorraeumen) injektiv gdw. sie surjektiv sind gdw. sie bijektiv sind. a) ist also nicht so schwer.

b)mir ist nicht ganz klar, was du hier meinst. vermutlich [mm] $t:=w\circ [/mm] s$ oder? und definiert nur auf der x-achse? falls es das ist, setze doch einfach mal $(x,0)$ ein und schaue, was raus kommt. du siehst dann schon, welche eigenschaften die abbildung hat.


gruss
matthias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]