matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUmkehrabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Umkehrabbildung
Umkehrabbildung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrabbildung: Bijektiv?
Status: (Frage) beantwortet Status 
Datum: 21:33 Do 25.02.2010
Autor: Pacapear

Hallo!

Ich hab mal eine kurze Frage zu Umkehrabbildungen:

Eine Funktion hat ja dann eine Umkehrabbildung, wenn sie bijektiv ist.

Ist die Umkehrabbildung auch bijektiv?

Eigentlich mein ich schon, aber irgendwie bin ich mir doch unsicher.

LG Nadine

        
Bezug
Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Do 25.02.2010
Autor: gfm

Eine bijektive Abbildung f zwischen zwei Mengen A und B kann man sich so vorstellen, dass von jedem Element der Menge A ein Faden zu einem Element der Menge B läuft und dabei jedes Element von B erreicht wird und man beim Zurücklaufen von B nach A immer beim selben Ausgangselement ankommt (d.h. es gibt keine zwei Fäden, die bei verschiedenen Elementen aus A starten und beim selben Element in B ankommen). Wenn man nun die ganze Situation von B aus betrachtet, also in der Situation der Umkehrfunktion, dann findet man dieselbe Situation vor. Da vorher alle Elemente von B erreicht wurden, ist die Umkehrabbildung [mm] f^{-1} [/mm] auf ganz B definiert. Und da vorher f auf ganz A definiert war, ist [mm] f^{-1} [/mm] surjektiv (erreicht also jedes Element von A).

LG

gfm


Bezug
        
Bezug
Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Fr 26.02.2010
Autor: fred97


> Hallo!
>  
> Ich hab mal eine kurze Frage zu Umkehrabbildungen:
>  
> Eine Funktion hat ja dann eine Umkehrabbildung, wenn sie
> bijektiv ist.
>  
> Ist die Umkehrabbildung auch bijektiv?
>  
> Eigentlich mein ich schon, aber irgendwie bin ich mir doch
> unsicher.


Warum versuchst Du nicht, das Ganze zu beweisen ?

    Sei   $f:X [mm] \to [/mm] Y$ bijektiv.  Dann ist insbes. $f(X) = Y$

Die Umkehrabbildung von f, ich nenne sie mal g, hat also den Def.-Bereich Y, somit:

           $g:Y [mm] \to [/mm] X$ .

Wir haben:  (*)   $g [mm] \circ [/mm] f = [mm] id_X$ [/mm]   und  $f [mm] \circ [/mm] g = [mm] id_Y$ [/mm]

Surjektivität von g: Sei x [mm] \in [/mm] X. Wie mußt Du wohl y [mm] \in [/mm] Y wählen, damit g(y) = x ist ?

Injektivität von g: Seien [mm] y_1, y_2 \in [/mm] Y und [mm] g(y_1)=g(y_2). [/mm] Kannst Du zeigen, dass [mm] y_1=y_2 [/mm] ist


FRED

>  
> LG Nadine


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]