matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Umkehrfunktion
Umkehrfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:42 Mi 17.01.2007
Autor: Sharik

Aufgabe
Zeige, dass [mm] P:\IR \to \IR, x\mapsto x^5+x+2 [/mm] bijektiv ist und eine Umkehrfunktion g mit [mm] 0 Tip: {0,2,4} [mm] \subset P(\IZ) [/mm]

Hallo Leute,

ich weiss, dass P streng monoton wachsend ist, da [mm] P'(x)=5x^4+1 [/mm] >0 ist für alle [mm] x\in \IR. [/mm]  
P ist bijektiv, da P(x) [mm] \to +\infty [/mm] für [mm] x\to +\infty [/mm] und P(x) [mm] \to -\infty [/mm] für [mm] x\to -\infty [/mm] , d.h. das P den ganzen Wertebereich [mm] \IR [/mm] einnimmt und es existiert die Umkehrfunktion [mm] g:\IR \to \IR. [/mm]
Liege ich soweit richtig?

Da g'(y)= [mm] P'(x)^{-1} \le [/mm] 1 erfüllt die Umkehrfunktion folgendes [mm] 0 Kann man das so machen?

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Mi 17.01.2007
Autor: Leopold_Gast

Du mußt nur den fundamentalen Zusammenhang

[mm]p'(x) \cdot g'(y) = 1[/mm] für [mm]y = p(x)[/mm]

verwenden. Beachte [mm]p'(x) = 5x^4 + 1 \geq 1[/mm]. Was heißt das also für [mm]g'(y)[/mm]?

Und die Ableitungen an den gesuchten Stellen lassen sich auch leicht ermitteln. Mit etwas Probieren kann man die zu den [mm]y[/mm]-Werten passenden [mm]x[/mm]-Werte finden. Zum Beispiel gilt: [mm]p(-1) = 0[/mm]. Daher folgt nach Obigem

[mm]p'(-1) \cdot g'(0) = 1[/mm]

Und [mm]p(x), \, p'(x)[/mm] beherrscht man ja völlig.

Bezug
                
Bezug
Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Mi 17.01.2007
Autor: Sharik

Hey Leopold_Gast,
danke erstmal für die schnelle Antwort.

> Du mußt nur den fundamentalen Zusammenhang
>  
> [mm]p'(x) \cdot g'(y) = 1[/mm] für [mm]y = p(x)[/mm]
>  
> verwenden. Beachte [mm]p'(x) = 5x^4 + 1 \geq 1[/mm]. Was heißt das
> also für [mm]g'(y)[/mm]?

Heißt das dann, dass [mm] g'(x)\le1 [/mm] sien muss damit P'(x) [mm] \cdot [/mm] g'(y)=1 ist. Oder was meinst du damit?

>  
> Und die Ableitungen an den gesuchten Stellen lassen sich
> auch leicht ermitteln. Mit etwas Probieren kann man die zu
> den [mm]y[/mm]-Werten passenden [mm]x[/mm]-Werte finden. Zum Beispiel gilt:
> [mm]p(-1) = 0[/mm]. Daher folgt nach Obigem
>  
> [mm]p'(-1) \cdot g'(0) = 1[/mm]

genau das hab ich auch versucht und hab da folgendes rausbekommen [mm] g'(0)=g'(P(-1))=(P'(-1))^{-1}=1/6 [/mm]
g'(2)=1
g'(4)=1/6

das schaut auch gut aus oder?

Bezug
                        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:18 Do 18.01.2007
Autor: Leopold_Gast

Wenn in einem Produkt positiver (!) Zahlen mit Wert 1 ein Faktor größer oder gleich 1 ist, muß der andere kleiner oder gleich 1 sein.

Du hast alles richtig gemacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]