matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Umkehrfunktion
Umkehrfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:01 Fr 11.02.2011
Autor: sommerregen

Aufgabe
Sei f : A [mm] \to [/mm] B und b [mm] \in [/mm]  B. Worin unterscheiden sich [mm] f^{-1}; f^{-1} [/mm] ({b}) und [mm] f^{-1}(b)? [/mm]

Guten Morgen,

auch bei der Aufgabe komme ich nicht weiter bzw. habe noch nichtmal einen Ansatz.
[mm] f^{-1} [/mm] würde ich als die "komplette" Umkehrfunktion von f sehen. Aber die anderen beiden? Damit eine Funktion eine Umkehrfunktion haben kann, muss sie doch bijektiv sein, oder? Also kann b auch nur genau ein Urbild haben.
Irgendwie stehe ich gerade voll auf dem Schlauch.

Mag mir mal jemand helfen?
Liebe Grüße!

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Fr 11.02.2011
Autor: fred97


> Sei f : A [mm]\to[/mm] B und b [mm]\in[/mm]  B. Worin unterscheiden sich
> [mm]f^{-1}; f^{-1}[/mm] ({b}) und [mm]f^{-1}(b)?[/mm]
>  Guten Morgen,
>  
> auch bei der Aufgabe komme ich nicht weiter bzw. habe noch
> nichtmal einen Ansatz.
>  [mm]f^{-1}[/mm] würde ich als die "komplette" Umkehrfunktion von f
> sehen.

Ja, falls eine Umkehrfunktion existiert.


>  Aber die anderen beiden?



Sei C Teilmenge von B. Dann hat man folgende Definition:

     (*)          [mm] $f^{-1}(C):= \{x \in A: f(x) \in C\}$. [/mm]

Links steht also das Symbol [mm] f^{-1}, [/mm] obwohl eine Umkehrfunktion nicht ex. muß. Bei (*) handelt es sich lediglich um eine Schreibweise.

Aus (*) folgt dann:

                  [mm] $f^{-1}(\{b\}):= \{x \in A: f(x) =b\}$. [/mm]


Das Symbol  $ [mm] f^{-1}(b)$ [/mm]  ist nur sinnvoll wenn eine Umkehrfunktion ex.  Dann bedeutet es den Funktionswert von [mm] f^{-1} [/mm] an der Stelle b.

FRED


> Damit eine Funktion eine
> Umkehrfunktion haben kann, muss sie doch bijektiv sein,
> oder? Also kann b auch nur genau ein Urbild haben.
>  Irgendwie stehe ich gerade voll auf dem Schlauch.
>  
> Mag mir mal jemand helfen?
>  Liebe Grüße!


Bezug
                
Bezug
Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:37 Fr 11.02.2011
Autor: sommerregen

Alles klar! Vielen Dank für die ausführliche Hilfe, jetzt habe ichs verstanden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]