matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Umkehrfunktion
Umkehrfunktion < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:04 Do 05.01.2012
Autor: Chris_2k5


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich versuche nun schon seit einer Weile eine Umkehrfunktion zu bilden, jedoch leider ohne Erfolg.
Eigentlich ist diese recht übersichtlich. Ich weiß auch wie ich die Umkehrfunktion der einzelnen Funktionen bilde, also für [mm]h(x) [/mm] und [mm]j(x)[/mm], aber wie stelle ich die ganze Umkehrfunktion auf?
Hier ist nun die Funktion. A, B und C sind beliebiege Variablen.
[mm]f(x)=A(e^{(x/B)}-1)+\frac{x}{C}=h(x)+j(x)[/mm]

Wenn sich jemand an die Gleichung wagt, Danke im Voraus!!! [turn]



        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Do 05.01.2012
Autor: leduart

Hallo
sollst du wirklich die Umkehrfkt bilden? ich glaub kaum, dass das geht! oder sollst du nur zeigen dass eine an jeder Stelle existiert? Dann zeige die Monotonie!
Gruss leduart


Bezug
                
Bezug
Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 Do 05.01.2012
Autor: Chris_2k5


Hallo leduart,

erst einmal Danke für deine Antwort.
...
Ja, ich brauche dazu die Umkehrfunktion. Da die Funktion monoton stetig steigend ist, sollte das auch möglich sein diese aufzustellen. Die Frage wäre nur wie.
Eine Möglichkeit die immer bei solchen Funktionen gehen sollte, ist die Reihenbildung über die Kettenregel, jedoch weiß ich nicht wie ich das richtig anwende. Naja, vielleicht weiß jemand sogar einen einfacheren Weg.

Viele Grüße
Chris


Bezug
                        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:52 Fr 06.01.2012
Autor: Al-Chwarizmi


>  Ja, ich brauche dazu die Umkehrfunktion. Da die Funktion
> monoton stetig steigend ist,

das ist sie aber keineswegs immer, aber zum Beispiel
im Fall, wo A, B, C allesamt positiv sind

> sollte das auch möglich sein
> diese aufzustellen. Die Frage wäre nur wie.

In geschlossener Form wird dies nicht möglich sein

>  Eine Möglichkeit die immer bei solchen Funktionen gehen
> sollte, ist die Reihenbildung über die Kettenregel, jedoch
> weiß ich nicht wie ich das richtig anwende. Naja,
> vielleicht weiß jemand sogar einen einfacheren Weg.
>  
> Viele Grüße
>  Chris


Nehmen wir mal den einfachsten Fall mit A=B=C=1 :

   [mm] f(x)=e^x+x-1 [/mm]

Die Umkehrfunktion zu bilden würde heißen, die
Gleichung

    [mm] e^x+x-1=y [/mm]  

oder  

    [mm] \underbrace{e^x+x-1-y}_{h(x)}=0 [/mm]

nach x aufzulösen. Wie gesagt ist dies in geschlos-
sener Form nicht möglich. In Frage kommen Näherungs-
verfahren wie z.B. das Newtonverfahren oder ein
anderes iteratives Verfahren, wenn etwa nur einzelne
bestimmte Werte gesucht sind. Beim Newtonverfahren
hätte man die Rekursionsformel:

    $\ [mm] x_{n+1}\ [/mm] :=\ [mm] x_n-\frac{h(x_n)}{h'(x_n)}\ [/mm] =\ [mm] x_n-\frac{e^{x_n}+x_n-1-y}{e^{x_n}+1}$ [/mm]
  
LG   Al-Chw.

Bezug
                                
Bezug
Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:24 Fr 06.01.2012
Autor: Chris_2k5

Hallo Al-Chwarizmi,

Danke für die Antwort. Die Umkehrung funktioniert für einzelne Werte super. Damit kann ich dann auch eine approximierte Funktion bilden. Das reicht mir dann auch, oder eben die Berechnung iterativ durchführen. [grins]

Danke nochmal für alle Antworten!

Viele Grüße
Chris


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]