matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenUmkehrfunktion + rot. Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Umkehrfunktion + rot. Dreieck
Umkehrfunktion + rot. Dreieck < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion + rot. Dreieck: Tipp
Status: (Frage) überfällig Status 
Datum: 13:13 Do 22.11.2007
Autor: Dummkopf88

Aufgabe
ft(x)= ln(x²+t)
x Element R
t > 0

a)
Zeigen Sie, dass [mm] f't(y)=(e^y)/2*Wurzel(e^y-t) [/mm] die Ableitung derUmkehrfunktion von ft(x) ist, ohnedie Umkehrfunktion direktabzuleiten.
b)
Für 0<t<0,5 sind die Punkte A(Wurzel(t)|ln(2t)), B(-Wurzel(t)|ln(2t)) und O(0|0) Ecktpunkteeines Dreiecks, das um die Y-Achserotiert. Für welches t wird der Raum-inhalt des entsprechenden Kegels am größten? Geben Sie den größt-möglichen Raum-inhalt des Kegels an.

Hallo,

zu a)
ich kenne die Formel f'(y)=1/(f'(x))
aber ich würde dann auch erst die Umkehrfunktion bilden und dann erhalte ich 2 Ergebnisse... Kann mir das jemand erklären? Ich glaub mit der Formel muss ich arbeiten.

zu b)
Die Volumenformel eines Kegels ist: V=(1/3)*Pi*r²*h
überlegt hab ich mir:
r= |Wurzel(t)| = |-Wurzel(t)|
h= f(Wurzel(t)) = f(-Wurzel(t)) = ln(2t)
somit ergibt sich: V(t)=(1/3)*Pi*t*ln(2t)
Ableitungen:
V'(t) = (1/3)*Pi*ln(2t) + (1/3)Pi
V''(t)= (1/3)*(Pi/t)

Für Extrema gilt: V'(t) = 0
also ist:
(1/3)*Pi*ln(2t) = -(1/3)Pi
ln(2t) = -1
2t= 1/e
t= 1/(2e)

V'(t)=0 und V''(t) ungleich 0
V''(1/(2e)) = (1/3)Pi * 2e -> >0 => Min

Ich suche aber ein Maximum ... Gibts andere Möglichkeiten um die Aufgabe zu lösen (Wenn es mit Randextrema geht, wie?), gibt es kein Maximum oder hab ich falsch gerechnet?
Wie ist die Aufgabe zu lösen?



        
Bezug
Umkehrfunktion + rot. Dreieck: Idee
Status: (Frage) überfällig Status 
Datum: 15:07 Do 22.11.2007
Autor: Dummkopf88

also:
zu a)
die Ableitung ist ja: f'(x)=(2x)/(x²+t)
und y=ln(x²+t) umgeformt ergibt:
x= [mm] Wurzel(e^y-t) [/mm] oder x= [mm] -Wurzel(e^y-t) [/mm]

das in f'(x) eingesetzt ergibt:
[mm] (2*Wurzel(e^y-t))/(e^y) [/mm] und [mm] -(2*Wurzel(e^y-t))/(e^y) [/mm]

das in die Formel f'(y)=1/f'(x) ergibt genau das gefragt aber ich hab ja 2 ergebnisse... das andere ist negativ... wie interpretiere ich nun das andere?

Bezug
                
Bezug
Umkehrfunktion + rot. Dreieck: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:17 Do 22.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Umkehrfunktion + rot. Dreieck: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:38 Do 22.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]