matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisUmkehrfunktion bilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Umkehrfunktion bilden
Umkehrfunktion bilden < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:53 Mo 08.11.2010
Autor: Clawfinger

Aufgabe
Bilden Sie die Umkehrfunktion von [mm] ln(x^{2}-1) [/mm] = 5y und skizzieren Sie sie in einem Koordinatensystem mit Hilfe einer Wertetabelle.

Hey
Also ich soll aus der angegebenen Funktion die Umkehrfunktion bilden, das heißt also nach x auflösen? Ich habe nur keine Ahnung, wie ich das anstellen soll. Soweit ich weiß, wird bei der Umkehrfunktion aus dem Logarhitmus ja die Exponentialfunktion gemacht. Nur wie würde das dann aussehen? Würde daraus [mm] e^{x^{2}-1} [/mm] = 5y werden? Nur wie bekomme ich dann aus der Exponentialfunktion das x so, dass es alleine auf einer Seite der Gleichung steht? Oder macht man das ganz anders?

        
Bezug
Umkehrfunktion bilden: Hinweise
Status: (Antwort) fertig Status 
Datum: 10:55 Mo 08.11.2010
Autor: Roadrunner

Hallo Clawfinger!


Die Idee mit dem "e hoch" ist doch sehr gut. Jedoch musst Du das auf beiden Seiten der Gleichung anwenden.

Und links wird dadurch genau der Logarithmus eliminiert.

Man erhält also:

[mm] $x^2-1 [/mm] \ = \ [mm] e^{5y}$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Umkehrfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 Mo 08.11.2010
Autor: Clawfinger

Aufgabe
Bilden Sie die Umkehrfunktion von f(x) = [mm] \bruch{4x^{2}-12x+9}{4x-6} [/mm]

Ah, okay. Danke für deine Hilfe.
Ich habe dann jetzt daraus x = [mm] \wurzel{e^{5y}+1} [/mm] gemacht. Stimmt das dann so?

Ich habe dann noch eine zweite Funktion mit der ich genau das selbe machen soll. Steht in der Aufgabenstellung oben. Folgende Teilschritte habe ich gemacht:

y = [mm] \bruch{4x^{2}-12x+9}{4x-6} [/mm] | * 4x - 6
4xy - 6y = [mm] 4x^{2}-12x+9 [/mm] | [mm] -4x^{2}-12x-9 [/mm]
0 = [mm] -4x^{2}-12x+4xy-6y-9 [/mm]

Ich bin an die Aufgabe eigentlich so herangegangen, dass ich die pq-Formel dann anwenden wollte. Am Ende kann ich das aber dann leider doch nicht. Ein anderer Weg das zu lösen fällt mir aber auch nicht ein. Kann mir da wieder jemand einen Tipp geben?
Danke!

Bezug
                        
Bezug
Umkehrfunktion bilden: Korrekturen
Status: (Antwort) fertig Status 
Datum: 14:06 Mo 08.11.2010
Autor: Roadrunner

Hallo Clawfinger!


>  Ich habe dann jetzt daraus x = [mm]\wurzel{e^{5y}+1}[/mm] gemacht.
> Stimmt das dann so?

Bedenke, dass es $x \ = \ [mm] \red{\pm} [/mm] \ [mm] \wurzel{...}$ [/mm] lauten muss.


Und: in Zukunft neue Aufgaben bitte in einem neuen Thread.


> Ich habe dann noch eine zweite Funktion mit der ich genau
> das selbe machen soll. Steht in der Aufgabenstellung oben.
> Folgende Teilschritte habe ich gemacht:
>  
> y = [mm]\bruch{4x^{2}-12x+9}{4x-6}[/mm] | * 4x - 6

Kann man so machen, ist aber zu kompliziert.

Wende im Zähler eine binomische Formel an und klammere im Nenner 2 aus.

Dann kannst Du hier drastisch vereinfachen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]