matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenUmkehrfunktion der e-funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Umkehrfunktion der e-funktion
Umkehrfunktion der e-funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion der e-funktion: umkehr funktion in einer summe
Status: (Frage) beantwortet Status 
Datum: 00:09 Mo 16.01.2006
Autor: ebola

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

moin moin...
ich hab nen prob...hab irgendwie schon zwei stunden dran gesessen und finde mienen fehler nicht... bzw ich kenne die stelle, weiß aber die lösung nicht...

Funktion:
f(x)= [mm] -6,228+0,114*(e^x+e^{-x}) [/mm]
f ' (x) = [mm] 0,114*(e^x-e^{-x}) [/mm]

jetzt suche ich die stellen, an dem der grap zur x-achse einen winkel von 45° hat, dh die ableitung 1 ist....

nach dem grap, den ich mit einem pc programm gezeichnet habe und der auf dem aufgabenzettel abgebildet ist, muss das ca zwischen x=1,5 und x=2,5 liegen... also als abgelesenen wert....

mein problem besteht darin,dass ich dachte,dass ich einfach den natürlichen logarythmus nehme und das auflöse... in der summe (nachdem ich den faktor wegdividiert habe) scheint das aber nicht zu gehen...
ich hatte gedacht,dass es so aussieht:

ln(1/0,114) = [mm] ln(e^x)+ [/mm] ln(e^(-x)) = x - (-x) =2x

daraus würde sich ergeben:

x = ln(1/0,114)/2

das ergebnis liegt dann bei ca x=1....

mein fehler muss also bei der umkehrfunktion in der summe liegen... kann mir da jemand helfen??

vielen dank im vorraus

Marc

        
Bezug
Umkehrfunktion der e-funktion: Hinweise zum Auflösen
Status: (Antwort) fertig Status 
Datum: 00:24 Mo 16.01.2006
Autor: Loddar

Hallo ebola,

[willkommenmr] !!


Bitte poste das nächste Mal Deine Frage nur einmal. Das reicht schon aus ;-) ...


Dein Fehler liegt in der Anwendung des Logarithmus'. Denn Du musst ihn dann auch auf die gesamte rechte Seite der Gleichung anwenden.

Und der Ausdruck [mm] $\ln\left(e^x-e^{-x}\right)$ [/mm] lässt sich mit keinem MBLogarithmusgesetz vereinfachen.


Multipliziere Deine Funktion zunächst mit [mm] $e^x$ [/mm] und anschließend substituieren: $t \ := \ [mm] e^x$ [/mm] . Damit erhältst Du eine quadratische Gleichung, die Du wie gewohnt (z.B. MBp/q-Formel) lösen kannst.

Gruß
Loddar


Bezug
                
Bezug
Umkehrfunktion der e-funktion: anderer weg
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:48 Mo 16.01.2006
Autor: ebola

moin... danke erst mal....

ich habe heute auch noch n freund von mir gefragt... bzw einen mitschüler...vielleicht kennt den ja sogar wer.. christian sattler.... naja... lachs...
also der hat mir gesagt,dass es eine bekannte funktion für den ausdruck

[mm] (e^x-e^{-x})/2 [/mm]

gibt.

es heißt:

[mm] sinh()=(e^x-e^-x)/2 [/mm]

also kann ich die ganze gleichung durch zwei teilen und dann die umkehrfunktion sihnh^-1 anwenden und bekomme das ergebnis raus... es liegt bei ca 2,1... also stimmt auch...

danke für die hilfe...aber so gehts einfacher!

greetz

marc



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]