matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisUmkehrfunktion einer ln-Funkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Umkehrfunktion einer ln-Funkt.
Umkehrfunktion einer ln-Funkt. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion einer ln-Funkt.: Frage
Status: (Frage) beantwortet Status 
Datum: 09:44 So 23.01.2005
Autor: loto

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo

Ich habe folgendes Problem:

Ich muss die Umkehrfunktion von ln ((x-1)/(x-3)2)   Bemerkung: ( "(x-3) hoch 2")

im Bereich x>3 bilden!

Mein Ansatz: y = ln ((x-1)/(x-3)2 )      (  "(x-3) hoch 2")

                                ey= (x-1)/(x-3)2            (ey bedeutet "e hoch y")

…

ey * x2 – 6 * ey * x – x + 1 +9 * ey = 0


weiter komm ich nicht mehr!! Ich weis einfach nicht wie ich jetzt nach „x“ auflösen soll!!

Wäre ihnen sehr dankbar für ihre Hilfe!
Danke schon mal im Voraus!

Mit freundlichen Grüßen loto


        
Bezug
Umkehrfunktion einer ln-Funkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 So 23.01.2005
Autor: Paulus

Lieber loto

[willkommenmr]

man könnte deine Formeln etwas besser lesen, wenn du dich kurz mit dem Formeleditor beschäftigen würdest.

Das sähe dann so aus:

[mm] $y=\ln(\bruch{x-1}{(x-3)^2})$ [/mm]

[mm] $e^{y}=\bruch{x-1}{(x-3)^2}$ [/mm]

[mm] $e^{y}(x-3)^2-x+1=0$ [/mm]

[mm] $e^{y}x^2-6e^{y}x+9e^y-x+1=0$ [/mm]

[mm] $e^{y}x^2-6e^{y}x-x+9e^{y}+1=0$ [/mm]

Bis hierhin hast du ja alles super gemacht, und der Rest ist auch nicht mehr so schwierig:

Einfach ausklammern:

[mm] $e^{y}x^2+(-6e^{y}-1)x+(9e^y+1)=0$ [/mm]

Jetzt hast du doch einfach eine quadratische Gleichung der Form

[mm] $ax^2+bx+c=0$ [/mm]

Die hat doch, wenn ich mich richtig entsinne, die beiden Lösungen

[mm] $x_{1,2}=\bruch{-b\pm\wurzel{ b^2-4ac}}{2a}$ [/mm] :-)

Mit lieben Grüssen

Paul

Bezug
        
Bezug
Umkehrfunktion einer ln-Funkt.: einfacher?!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 So 23.01.2005
Autor: cologne

hallo loto,

ich dachte erst, durch anwenden der logarithmus-gesetze kann man noch etwas vereinfachen, aber da hatte ich dann einen denkfehler und man kommt wohl nicht viel weiter, hmmm, dann hätt ich erstmal nix weiteres hinzuzufügen, aber vielleicht fällt mir noch was ein ... :-)

gruß gerd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]