matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesUmkehrfunktion und Extremwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Umkehrfunktion und Extremwerte
Umkehrfunktion und Extremwerte < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion und Extremwerte: Frage
Status: (Frage) beantwortet Status 
Datum: 17:42 Fr 03.06.2005
Autor: Skydiver

Hallo.

Ich hätte zwei Fragen an euch, auf die hoffentlich jemand eine Antwort weiß.

Zur Ersten: Umkehrfunktion

Für welche c aus den reellen Zahlen sind für die Funktion y = (y1, y2):

y1(x1,x2) = x1+c * sinh(x2)
y2(x1,x2) = sinh(x1) + x2

auf dem Wertebereicch von y lokal Umkehrfunktionen x(y) definiert? Berechnen sie für c = 2 die Ableitung x'(y) an der Stelle y0 = (0,0)
(Lsg: c nicht aus ]0,1]; x'(0,0) = [(-1,2),(1,-1)])

Also bei diesem Beispiel hab ich keine Ahnung wie ich vorgehen muss. Vielleicht hat jemand einen Tip.

zum Zweiten:

Bestimmen sie die lokalen Maxima und Minima der Funktion f(w,x,y,z) = w+x+y+z unter den Nebenbedingungen [mm] w^3+w+x^3+x [/mm] = 2 und [mm] y^2+z^2 [/mm] = 1 durch Lagrange Parameter. Prüfen sie welche der gefundenen Punkte Minima und welche Maxima sind.

Also hier bin ich bereits auf die Lösungen gekommen: es gibt zwei Punkte (1,1,-2^(-1/2),-2^(-1/2)) und das gleiche mit positivem Vorzeichen.

Nun weiß ich jedoch nicht wie ich herausfinde ob es sich dabei um Minima oder Maxima handelt.
Normalerweise setzt man ja einfach nur die Werte in die zweiten Ableitungen der Funktion ein und überprüft die Definitheit der zugehörigen Jacobi Matrix. Bei dieser Funktion sind jedoch die zweiten Ableitungen alle gleich Null!
Was kann ich da machen??

mfg.

        
Bezug
Umkehrfunktion und Extremwerte: zur ersten Aufgabe
Status: (Antwort) fertig Status 
Datum: 18:58 Fr 03.06.2005
Autor: Stefan

Hallo Skydiver!

Bitte demnächst zwei völlig verschiedene Fragen in zwei verschiedene Diskussionsstränge stellen, Danke! :-)

Die Abbildung [mm] $(y_1,y_2)$ [/mm] ist genau dann für alle [mm] $(x_1,x_2)$ [/mm] lokal umkehrbar, wenn für alle [mm] $(x_1,x_2)$ [/mm] die Jacobimatrix regulär ist, also dessen Determinante nicht verschwindet.

Nun ist

[mm] $J_y(x_1,x_2) [/mm] = [mm] \pmat {\frac{\partial y_1}{\partial x_1}(x_1,x_2) & \frac{\partial y_1}{\partial x_2}(x_1,x_2) \\ \frac{\partial y_2}{\partial x_1}(x_1,x_2) & \frac{\partial y_2}{\partial x_2}(x_1,x_2) } [/mm] = [mm] \pmat{ 1 & c \cdot \cosh(x_2) \\ \cosh(x_1) & 1}$, [/mm]

also:

[mm] $\det(J_y(x_1,x_2) [/mm] = 1-c [mm] \cdot \cosh(x_1)\cosh(x_2)$. [/mm]

Hast du jetzt eine Idee, wie man auf den Bereich kommt, in dem sich $c$ bewegen muss:

Beachte dabei bitte, dass

[mm] $\cosh(x) \ge [/mm] 1$ für alle $x [mm] \in \IR$ [/mm]

gilt.

Weiterhin gilt für die Umkehrfunktion [mm] $(x_1(y_1,y_2),x_2(y_1,y_2)$: [/mm]

[mm] $J_x(y_1,y_2) [/mm] = [mm] \left(J_y(x_1,x_2) \right)^{-1}$. [/mm]

Hier ist also für $c=2$:

[mm] $J_x(y_1,y_2) [/mm] = [mm] \frac{1}{1-2 \cdot \cosh(x_1)\cosh(x_2)} \pmat{ 1 & -2 \cdot \cosh(x_2) \\ -\cosh(x_1) & 1}$, [/mm]

also:

[mm] $J_x(0,0) [/mm] = [mm] \frac{1}{-1} \pmat{ 1 & -2 \\ -1& 1} [/mm] = [mm] \pmat{ -1 & 2 \\ 1 & -1}$, [/mm]

wie behauptet.

Viele Grüße
Stefan

Bezug
                
Bezug
Umkehrfunktion und Extremwerte: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:18 Sa 04.06.2005
Autor: Skydiver

Hallo nochmal.

Besten Dank erstmal für die Antwort!
Also dass mit dem Definitionsbereich von c ist mir jetzt klar.
Jedoch den zweiten Punkt verstehe ich noch nicht so ganz.
Jx(y1,y2) ist gleich der Inversen [Jx(y1,y2)]^(-1)?
Bitte um ein paar erklärende Worte.

mfg.


Bezug
                        
Bezug
Umkehrfunktion und Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 So 05.06.2005
Autor: Stefan

Hallo Skydiver!

Hier hatte ich mich natürlich verschrieben. Ich habe es jetzt aber verbessert und jetzt sollte es klar sein.

Viele Grüße
Stefan

Bezug
        
Bezug
Umkehrfunktion und Extremwerte: 2. Aufgabe
Status: (Antwort) fertig Status 
Datum: 19:53 Fr 03.06.2005
Autor: MathePower

Hallo Skydiver,

> Nun weiß ich jedoch nicht wie ich herausfinde ob es sich
> dabei um Minima oder Maxima handelt.
>  Normalerweise setzt man ja einfach nur die Werte in die
> zweiten Ableitungen der Funktion ein und überprüft die
> Definitheit der zugehörigen Jacobi Matrix. Bei dieser
> Funktion sind jedoch die zweiten Ableitungen alle gleich
> Null!
>  Was kann ich da machen??

Die Nebenbedingungen spielen bei der Art des Extremum auch eine Rolle.
Das heißt, sie müssen bei den zweiten Ableitungen auch berücksichtigt werden.

Gruß
MathePower

Bezug
                
Bezug
Umkehrfunktion und Extremwerte: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:14 So 05.06.2005
Autor: Skydiver

Bedeutet das, dass ich mir mit Hilfe der ersten Ableitungen auch die Lagrange Parameter für die Nebenbedingungen ausrechnen muss, diese dann in die Gleichungen einsetze, davon die 2. Ableitungen bilde, um diese dann mit Hilfe der Jacobi Matrix auf Definitheit zu untersuchen?

mfg.

Bezug
                        
Bezug
Umkehrfunktion und Extremwerte: Richtig
Status: (Antwort) fertig Status 
Datum: 17:39 So 05.06.2005
Autor: MathePower

Hallo Skydiver,

> Bedeutet das, dass ich mir mit Hilfe der ersten Ableitungen
> auch die Lagrange Parameter für die Nebenbedingungen
> ausrechnen muss, diese dann in die Gleichungen einsetze,
> davon die 2. Ableitungen bilde, um diese dann mit Hilfe der
> Jacobi Matrix auf Definitheit zu untersuchen?

selbstverständlich.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]