matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUmordnung von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Umordnung von Reihen
Umordnung von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umordnung von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Sa 31.03.2007
Autor: DerD85

Satz: Umordnung einer absolut konvergenten Reihe
Sei [mm]\summe_{n=0}^{\infty}z_n[/mm] absolut konvergent und es sei [mm]z=\summe_{n=0}^{\infty}z_n[/mm]. Dann konvergiert auch jede Umordnung von [mm]\summe_{n=0}^{\infty}z_n[/mm] gegen z.

Meine frage:
Warum muss ich absolute Konvergenz fordern? MIr wird das hier (auch nicht aus dem Beweis) deutlich :(.

Dankefür eure Hilfe,

Dennis

        
Bezug
Umordnung von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Sa 31.03.2007
Autor: schachuzipus

Hallo Dennis,

vielleicht kann ich das an einem Gegenbsp. verdeutlichen?

Nehmen wir [mm] \summe_n\frac{(-1)^n}{n+1} [/mm]

[mm] =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}\pm... [/mm]

Jetzt ordnen wir mal auf 2 verschiedene Weisen um:

(1) [mm] 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}\pm... [/mm]

[mm] =1+\frac{1}{2}-2\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-2\frac{1}{6}+\frac{1}{7}+\frac{1}{8}-2\frac{1}{8}\pm.... [/mm]

[mm] =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+\frac{1}{5}+\frac{1}{6}-\frac{1}{3}+\frac{1}{7}+\frac{1}{8}-\frac{1}{4}\pm.... [/mm]

[mm] \longrightarrow [/mm] 0

(2) [mm] 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}\pm... [/mm]

[mm] =\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+.... [/mm]

[mm] =\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+.....\ge\frac{1}{2} [/mm]

Damit wäre also [mm] 0=\limes_{k\rightarrow\infty}\summe_{n=0}^{k}\frac{(-1)^n}{n+1}\ge\frac{1}{2} [/mm]

Dh. verschiedene Umordungen können zu verschiedenen Reihenwerten führen.

Daher das Tamtam um den Begriff "unbedint konvergent" - also für jede Umordung konvergent ( gleichwertig zum Begriff "absolut kgt")

Gruß

schachuzipus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]