matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUmordnungssatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Umordnungssatz
Umordnungssatz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umordnungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 05.04.2008
Autor: Irmchen

Hallo alle zusammen!

Ich beschäftige mich gerade mit der "Kommutativität" absolut konvergenter Reihen, und habe einige Probleme den Beweis zu verstehen :-(. Hoffe, dass mir jemand dabei helfen kann!

SATZ :

Sei [mm] \summe_{n = 1}^{ \infty} a_n [/mm] eine absolut konvergente Reihe und [mm] \sigma [/mm] eine Bijektion von [mm] \mathbb N [/mm]  auf sich. Sei [mm] b_n : = a_{\sigma(n) }[/mm]. Dann ist [mm] \summe_{n=1}^{ \infty } b_n [/mm] absolut konvergent und die [mm] \summe_{n=1}^{\infty} a_n = \summe_{n=1}^{\infty} b_n [/mm].

BEWEIS :

Sei [mm] s_n := \summe_{k=1}^{n} a_k [/mm] und [mm] t_n := \summe_{k=1}^{n} b_k [/mm].

Für [mm] n \in \mathbb N [/mm] sei [mm] m(n) := \max \{ \sigma(1), ... , \sigma(n) \} [/mm]

Dann folgt:

[mm] \summe_{ k = 1 }^{n} \left| b_k \right| = \summe_{k=1}^{n} \left| a_{ \sigma(n) } \right| \le \summe_{k=1}^{ m(n) } \left| a_k \right| \le \summe_{k=1}^{ \infty} \left| a_k \right|. [/mm]

[ 1. Frage :
  Warum gilt denn diese Ungleichung: [mm] \summe_{k=1}^{n} \left| a_{ \sigma(n) } \right| \le \summe_{k=1}^{ m(n) } \left| a_k \right| [/mm] ? ]


Also konvergiert [mm] \summe_{ k=1 }^{ \infty } b_k [/mm] absolut.

[   2. Frage : Fließt in diese Folgerung jetzt auch irgendwie das   Majorantenkriterium mit ein? Oder reicht für den Schluss der absoluten Konvergenz nur die Ungleichung? ]

Noch zu zeigen:   [mm] \limes_{ n \to \infty } ( t_n - s_n ) = 0 [/mm]

Sei [mm] \epsilon > 0 [/mm] .
Zeige:       Es gibt [mm] M \in \mathbb N [/mm] mit [mm] \left| t_m - s_m \right| < \epsilon [/mm] für alle [mm] m \ge M [/mm].

Es gibt ein [mm] N \in \mathbb N [/mm] mit [mm] \left| a_{N + 1 } \right| + \left| a_{N+2 } \right|+ ... < \epsilon [/mm]

[ 3. Frage :   Dass es so ein N gibt, liegt an der vorausgesetzten absoluten Konvergenz der Reihe [mm] \summe_{n = 1}^{ \infty} a_n [/mm] ? ]

[ Ab hier verstehe ich leider nicht mehr wirklich viel, und wäre sehr dankbar, wenn mir jemand ab hier den Beweis erklären könnte ]

Es gibt ein [mm] M \in \mathbb N [/mm] mit [mm] \{ 1, ..., N \} \subseteq \{ \sigma(1), ..., \sigma(M) \} [/mm]

Sei [mm] m \ge M [/mm]. Dann ist [mm] \{ 1, ..., N \} \subseteq \{ \sigma(1), ..., \sigma(m) \} [/mm]

Aus [mm] t_m - s_m = \summe_{k = 1 }^{m} a_{ \sigma(k) } - \summe_{k = 1 }^{m} a_k [/mm] heben sich mindestens die Terme [mm] a_1 , ... , a_N [/mm] auf.
Also [mm] t_m - s_m = \epsilon_1 a_{N+1} + \epsilon_2 a_{N+2}+ ... [/mm]
mit geeignetem [mm] \epsilon_i \in \{ 0,1,-1 \}. [/mm]

[mm] \Rightarrow \left| t_m - s_m \right| \le \left| a_{N+1} \right| + \left| a_{N+2 } \right| + ... < \epsilon \Rightarrow \limes_{n \to \infty } ( t_m - s_m ) = 0 [/mm]

[mm] \Rightarrow [/mm] Behauptung


Viele Grüße
Irmchen

        
Bezug
Umordnungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Sa 05.04.2008
Autor: Merle23


> Hallo alle zusammen!
>  
> Ich beschäftige mich gerade mit der "Kommutativität"
> absolut konvergenter Reihen, und habe einige Probleme den
> Beweis zu verstehen :-(. Hoffe, dass mir jemand dabei
> helfen kann!
>  
> SATZ :
>  
> Sei [mm]\summe_{n = 1}^{ \infty} a_n[/mm] eine absolut konvergente
> Reihe und [mm]\sigma[/mm] eine Bijektion von [mm]\mathbb N[/mm]  auf sich.
> Sei [mm]b_n : = a_{\sigma(n) }[/mm]. Dann ist [mm]\summe_{n=1}^{ \infty } b_n[/mm]
> absolut konvergent und die [mm]\summe_{n=1}^{\infty} a_n = \summe_{n=1}^{\infty} b_n [/mm].
>
> BEWEIS :
>  
> Sei [mm]s_n := \summe_{k=1}^{n} a_k[/mm] und [mm]t_n := \summe_{k=1}^{n} b_k [/mm].
>  
> Für [mm]n \in \mathbb N[/mm] sei [mm]m(n) := \max \{ \sigma(1), ... , \sigma(n) \}[/mm]
>  
> Dann folgt:
>  
> [mm]\summe_{ k = 1 }^{n} \left| b_k \right| = \summe_{k=1}^{n} \left| a_{ \sigma(n) } \right| \le \summe_{k=1}^{ m(n) } \left| a_k \right| \le \summe_{k=1}^{ \infty} \left| a_k \right|. [/mm]
>  
> [ 1. Frage :
> Warum gilt denn diese Ungleichung: [mm]\summe_{k=1}^{n} \left| a_{ \sigma(n) } \right| \le \summe_{k=1}^{ m(n) } \left| a_k \right|[/mm]
> ? ]
>  

m(n) := [mm] \max \{ \sigma(1), ... , \sigma(n) \}. [/mm] Bei [mm] \summe_{k=1}^{ m(n) } \left| a_k \right| [/mm] werden alle Summanden von 1 bis m(n) aufsummiert, bei [mm] \summe_{k=1}^{n} \left| a_{ \sigma(n) } \right| [/mm] werden manche zwischendurch aber ausgelassen.

>
> Also konvergiert [mm]\summe_{ k=1 }^{ \infty } b_k[/mm] absolut.
>  
> [ 2. Frage : Fließt in diese Folgerung jetzt auch irgendwie
> das   Majorantenkriterium mit ein? Oder reicht für den
> Schluss der absoluten Konvergenz nur die Ungleichung? ]
>

Die Partialsummenfolge von [mm] \summe_{ k = 1 }^{n} \left| b_k \right| [/mm] ist monoton wachsend und durch [mm] \summe_{k=1}^{ \infty} \left| a_k \right| [/mm] nach oben beschränkt.

>
> Noch zu zeigen:   [mm]\limes_{ n \to \infty } ( t_n - s_n ) = 0[/mm]
>  
> Sei [mm]\epsilon > 0[/mm] .
>  Zeige:       Es gibt [mm]M \in \mathbb N[/mm] mit [mm]\left| t_m - s_m \right| < \epsilon[/mm]
> für alle [mm]m \ge M [/mm].
>  
> Es gibt ein [mm]N \in \mathbb N[/mm] mit [mm]\left| a_{N + 1 } \right| + \left| a_{N+2 } \right|+ ... < \epsilon[/mm]
>  
> [ 3. Frage :   Dass es so ein N gibt, liegt an der
> vorausgesetzten absoluten Konvergenz der Reihe [mm]\summe_{n = 1}^{ \infty} a_n[/mm]
> ? ]
>  

Jepp, liegt an der Konvergenz der Reihen - heisst glaub ich Cauchy-Kriterium, kannst ja mal Wikipedia dazu befragen.

>
> [ Ab hier verstehe ich leider nicht mehr wirklich viel, und
> wäre sehr dankbar, wenn mir jemand ab hier den Beweis
> erklären könnte ]
>  
> Es gibt ein [mm]M \in \mathbb N[/mm] mit [mm]\{ 1, ..., N \} \subseteq \{ \sigma(1), ..., \sigma(M) \}[/mm]
>  

Denn sonst wäre [mm] \sigma [/mm] keine Umordnung.

>
> Sei [mm]m \ge M [/mm]. Dann ist [mm]\{ 1, ..., N \} \subseteq \{ \sigma(1), ..., \sigma(m) \}[/mm]
>  

Klar, wegen der oberen Zeile.

>
> Aus [mm]t_m - s_m = \summe_{k = 1 }^{m} a_{ \sigma(k) } - \summe_{k = 1 }^{m} a_k[/mm]
> heben sich mindestens die Terme [mm]a_1 , ... , a_N[/mm] auf.
>

Folgt ebenfalls aus der oberen Zeile.

>
>  Also [mm]t_m - s_m = \epsilon_1 a_{N+1} + \epsilon_2 a_{N+2}+ ...[/mm]
>  
> mit geeignetem [mm]\epsilon_i \in \{ 0,1,-1 \}.[/mm]
>

Der Rest, der übrig bleibt. Da man nicht weiss, welches Vorzeichen die restlichen Summanden haben, müssen diese [mm] \epsilon_i [/mm] immer dran.

>  
> [mm]\Rightarrow \left| t_m - s_m \right| \le \left| a_{N+1} \right| + \left| a_{N+2 } \right| + ... < \epsilon [/mm]
>

Dreiecksungleichung, bzw. trivial.

>
> [mm]\Rightarrow \limes_{n \to \infty } ( t_m - s_m ) = 0[/mm]
>

Klar.

>
> [mm]\Rightarrow[/mm] Behauptung
>  
>
> Viele Grüße
>  Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]