Umparametrisierung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] $\gamma [/mm] : [mm] [a,b]\to \IR^{n}$ [/mm] eine Abbildung.
Zeigen Sie: [mm] $L(\gamma) \ge \| \gamma(a)-\gamma(b) \|$. [/mm] Gleichheit haben wir genau dann, wenn [mm] $\gamma$ [/mm] aus dem Weg [mm] $\pi: [/mm] [0,1] [mm] \to \IR^{n}$ $\pi(t)=t\gamma(a)+(1-t)\gamma(b)$ [/mm] ensteht durch monotone Umparametrisierung mit einem [mm] $\beta$ [/mm] das $0$ und $1$ als Werte annimmt. |
Einen schönen guten Tag allerseits,
Die Ungleichheit bei dieser Aufgabe ist kein Problem mit Dreiecksungleichung un Definition der Bogenlänge. Die Rückrichtung vom [mm] \gdw [/mm] ist mir auch gelungen.
Die Bogenänge ist invariant unter Umparametrisierung (Satz im Skript), also rechne ich den Weg von [mm] \pi [/mm] aus und zeige, dass dann Gleichheit gilt.
Die Hinrichtung wollte ich mit Widerspruch machen. Ich nehme also an, es gäbe ein [mm] \pi' \not= \pi [/mm] . Das würde auch funktionieren, wenn [mm] \pi' [/mm] nicht [mm] \pi+c [/mm] sein könnte. Der Weg von [mm] \pi' [/mm] = [mm] \pi+c [/mm] ist doch der gleiche wie der Weg von [mm] \pi. [/mm] Und die monotone Umparametrisierung [mm] \beta [/mm] kann doch auch auf [mm] \pi' [/mm] zugreifen, denn dort ändert sich ja nicht der Definitionsbereich, sondern nur er Wertebereich durch Anhängen einer Konstante.
Wenn ich annehme, dass [mm] \pi' \not= \pi [/mm] + c ist, dann funktioniert der Beweis nämlich. Dann ist die Ableitung nach t von [mm] \pi' [/mm] nämlich nicht gleich der Ableitung von [mm] \pi [/mm] und es folgt, dass die Gleichheit nicht gilt...
Diese Konstante stört mich...:)
Wo ist da mein Denkfehler?
Viele Grüße
Alex
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:27 Mo 30.01.2006 | Autor: | matux |
Hallo Alex!
Leider konnte Dir keiner mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.
Vielleicht hast Du ja beim nächsten Mal mehr Glück .
Viele Grüße,
Matux, der Foren-Agent
Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.
|
|
|
|