matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeUmsatzfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Umsatzfunktion
Umsatzfunktion < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umsatzfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:21 Do 30.05.2013
Autor: Joxe

Aufgabe
Eine Süßwarenfirma testet den Verkaufserfolg einer neuen Sorte Pralinen und bietet sie in ihren Filialen zu verschiedenen Preisen an. Nach einer gewissen Anlaufzeit ergeben sich folgende Erfahrungswerte für den Zusammenhang zwischen Preis p (je Packung) und Tagesumsatz E:
(p in €/Pck. / E(p) in €/Tag)
(1 / 240)
(1,5 / 270)
(2 / 240)
(2,5 / 150)

a) Der Zusammenhang zwischen Preis p und Tagesumsatz E lässt sich durch eine ganzrationale Funktion zweiten Grades beschreiben.
Wie lautet die Vorschrift dieser Funktion?

b) Welche Gleichung hat die Nachfragefunktion x mit x = f(p), wenn x die Anzahl der Packungen bedeutet, die täglich beim Preis p umgesetzt werden, wenn täglich x Packungen verkauft werden sollen?
Zeigen Sie, dass sich die Umsatzfunktion auch in der Form
E(x) = 3x - [mm] \bruch{1}{120}x^{2} [/mm]
darstellen lässt.

Bei a) habe ich mittels Regression die Funktion

E(p) = [mm] -120p^{2} [/mm] + 360p

herausbekommen.

Bei b) lautet meine erste Funktion für die Anzahl der Packungen:

f(p) = -120p + 360

und die zweite zum festsetzen des Preises:

f(x) = [mm] -\bruch{1}{120}x [/mm] + 3

aber wie zeige ich, dass sich die Umsatzfunktion auch in der Form

E(x) = 3x - [mm] \bruch{1}{120}x^{2} [/mm]
darstellen lässt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Umsatzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:54 Do 30.05.2013
Autor: meili

Hallo,

> Eine Süßwarenfirma testet den Verkaufserfolg einer neuen
> Sorte Pralinen und bietet sie in ihren Filialen zu
> verschiedenen Preisen an. Nach einer gewissen Anlaufzeit
> ergeben sich folgende Erfahrungswerte für den Zusammenhang
> zwischen Preis p (je Packung) und Tagesumsatz E:
>  (p in €/Pck. / E(p) in €/Tag)
>  (1 / 240)
>  (1,5 / 270)
>  (2 / 240)
>  (2,5 / 150)
>  
> a) Der Zusammenhang zwischen Preis p und Tagesumsatz E
> lässt sich durch eine ganzrationale Funktion zweiten
> Grades beschreiben.
>  Wie lautet die Vorschrift dieser Funktion?
>  
> b) Welche Gleichung hat die Nachfragefunktion x mit x =
> f(p), wenn x die Anzahl der Packungen bedeutet, die
> täglich beim Preis p umgesetzt werden, wenn täglich x
> Packungen verkauft werden sollen?
>  Zeigen Sie, dass sich die Umsatzfunktion auch in der Form
>  E(x) = 3x - [mm]\bruch{1}{120}x^{2}[/mm]
>  darstellen lässt.
>  Bei a) habe ich mittels Regression die Funktion
>  
> E(p) = [mm]-120p^{2}[/mm] + 360p

[ok]

>  
> herausbekommen.
>  
> Bei b) lautet meine erste Funktion für die Anzahl der
> Packungen:
>  
> f(p) = -120p + 360
>  

[ok]

> und die zweite zum festsetzen des Preises:
>  
> f(x) = [mm]-\bruch{1}{120}x[/mm] + 3

[ok]

>  
> aber wie zeige ich, dass sich die Umsatzfunktion auch in
> der Form
>  
> E(x) = 3x - [mm]\bruch{1}{120}x^{2}[/mm]
>  darstellen lässt?

Umsatz: E(x) = x*p

Für p  f(x) = [mm]-\bruch{1}{120}x[/mm] + 3 einsetzen.

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 21m 3. Gonozal_IX
UStoc/Cov(X,Y)
Status vor 6h 07m 7. fred97
UAnaRn/Kettenregel Mehrdimensional
Status vor 17h 55m 9. rmix22
Transformationen/Dirac und Rechteck
Status vor 22h 41m 2. Al-Chwarizmi
SStoc/Münze
Status vor 22h 59m 4. angela.h.b.
UWTheo/unendlicher Würfelwurf Aufgabe
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]