matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikUmstellen einer Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Umstellen einer Gleichung
Umstellen einer Gleichung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umstellen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Di 03.02.2009
Autor: strong_

Aufgabe
[mm] \cos^{2}\alpha-\cos\alpha*\sin\alpha=\bruch{-g*x}{2*v^{2}} [/mm]

servus!

Ich habe da eine Gleichung in Physik die ich leider nicht umgestellt bekomme und zwar nach [mm] \alpha. [/mm] Ich vermute, dass es evtl über Additionstheoreme lösbar ist, jedoch komm ich nicht drauf.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Umstellen einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Di 03.02.2009
Autor: leduart

Hallo
[mm] 1+cos2\alpha-sin2\alpha=gx/v^2 [/mm]
daraus kannst du ne quadratische Gl. fuer [mm] sin^2\alpha [/mm] oder [mm] cos2\alpha [/mm] machen mit [mm] sin^2+cos^2=1 [/mm]
Bist du sicher, dass deine gl. richtig ist? sieht irgendwie nach wurfweite aus, aber nicht so ganz.
Gruss leduart

Bezug
                
Bezug
Umstellen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Di 03.02.2009
Autor: strong_

Aufgabe
Eine Kugel werde mit v0= 100m/s so abgeschossen, dass sie ein in horizontaler Richtung 50m und in vertikaler Richtung 50m höher gelegenes Ziel treffen soll. Berechne Abschusswinkel gegen die Horizontale.



[mm] s_{x}=v_{0x}t [/mm]
[mm] s_{y}=v_{0y}t-\bruch{g}{2}t^{2} [/mm]

[mm] v_{0x}=\cos\alpha v_{0} [/mm]
[mm] v_{0y}=\sin\alpha v_{0} [/mm]

[mm] s_{y}=\bruch{v_{0y}s_{x}}{v_{0x}}-\bruch{gs_{x}^{2}}{2v_{0x}^{2}} [/mm]


[mm] 2v_{0y}s_{x}v_{0x}-2s_{y}v_{0x}^{2}=gs_{x}^{2} [/mm]

[mm] 2\sin\alpha v_{0}s_{x}\cos\alpha v_{0}-2\cos^{2}\alpha v_{0}^{2}s_{y} =gs_{x}^{2} [/mm]

[mm] s_{x}=s_{y} [/mm]

[mm] 2v_{0}^{2}s_{x}(\sin\alpha \cos\alpha [/mm] - [mm] \cos^{2}\alpha) [/mm] = [mm] gs_{x}^{2} [/mm]

[mm] (\sin\alpha \cos\alpha [/mm] - [mm] \cos^{2}\alpha) [/mm] = [mm] \bruch{gs_{x}}{2v_{0}^{2}} [/mm]

Ich verstehe nicht wie ich das lösen sollte. Wie wende ich hier bsplw. die pq formel an oder wie komme ich auf $ [mm] sin^2+cos^2=1 [/mm] $ ?
Zur Schreibweise: bedeutet [mm] \cos2\alpha [/mm] und  [mm] \cos^{2}\alpha [/mm] das selbe ?


Bezug
                        
Bezug
Umstellen einer Gleichung: Korrektur + Hinweise
Status: (Antwort) fertig Status 
Datum: 14:56 Di 03.02.2009
Autor: Loddar

Hallo strong_,

[willkommenvh] !!


> Ich verstehe nicht wie ich das lösen sollte. Wie wende ich
> hier bsplw. die pq formel an

Wende die []Additionstheoreme an, um auf leduart's Darstellung zu kommen.


> oder wie komme ich auf  [mm]sin^2+cos^2=1[/mm] ?

Das ist der sogenannte "trigonometrische Pythagorars" und gilt immer:
[mm] $$\sin^2(\alpha)+\cos^2(\alpha) [/mm] \ = \ 1$$


>  Zur Schreibweise: bedeutet [mm]\cos2\alpha[/mm] und  [mm]\cos^{2}\alpha[/mm]
> das selbe ?

[notok] Nein. Es gilt: [mm] $\cos(2*\alpha) [/mm] \ = \ [mm] \cos(\alpha+\alpha) [/mm] \ [mm] \not= [/mm] \ [mm] \cos^2(\alpha) [/mm] \ = \ [mm] \cos(\alpha)*\cos(\alpha)$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Umstellen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Do 05.02.2009
Autor: strong_

Aufgabe
[mm] 1+1-2\sin^{2}\alpha-\sin2\alpha=-g*s/v^{2} [/mm]

Ist das mit quadratischer Gleich. gemeint?
Also ich komme einfach nicht weiter. Habe die ganze Zeit hin und her probiert - es klappt nicht. Ich komme einfach nicht auf [mm] \sin^{2}\alpha [/mm] + [mm] \cos^{2}\alpha=1 [/mm] ...vor allem verstehe ich nicht, was das für einen Effekt hat wenn dann beide Winkelf. weg sind?! Was bleibt über ?

Bezug
                                        
Bezug
Umstellen einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Do 05.02.2009
Autor: leduart

Hallo
Du hast nur [mm] s_x=S_y [/mm] benutzt, nicht die 50m.
das ganze wird einfacher, wenn du [mm] 50m=s_x [/mm] stzt, daraus
[mm] t=50m/(100m/s*cos\alpha)=0.5/cos\alpha [/mm] s
das in [mm] 50m=s_y [/mm] einsetzen.
du kriegst ne Gleichung mit tan/alpha und [mm] cos^2\alpha. [/mm]
dann benutze:
[mm] cos^2\alpha=1/(1-tan^2\alpha) [/mm]
du hast ne quadrat. gl fuer [mm] tan\alpha. [/mm] setze [mm] tan\alpha=x [/mm] und loese sie.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]