matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesUmstellung nach a
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Umstellung nach a
Umstellung nach a < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umstellung nach a: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Do 23.10.2014
Autor: micha20000

Hallo,

ich löse gerade ein Extremalproblem und habe beim letzten Schritt das Problem, dass ich die Variable a nicht auf eine Seite bekomme...

Die Gleichung lautet folgendermaßen:

[mm] \bruch{24.000.000a}{2.000.000}=a^{3} [/mm]

Wie kriege ich das a auf die andere Seite?

Vielen Dank

        
Bezug
Umstellung nach a: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Do 23.10.2014
Autor: Marcel

Hallo,

> Hallo,
>  
> ich löse gerade ein Extremalproblem und habe beim letzten
> Schritt das Problem, dass ich die Variable a nicht auf eine
> Seite bekomme...
>  
> Die Gleichung lautet folgendermaßen:
>  
> [mm]\bruch{24.000.000a}{2.000.000}=a^{3}[/mm]
>  
> Wie kriege ich das a auf die andere Seite?

die Gleichung ist korrekt für [mm] $a=0\,.$ [/mm] Für $a [mm] \not=0$ [/mm] liegt eine Division durch
[mm] $a\,$ [/mm] nahe...

Nebenbei: Man kann auch für $c [mm] \in \IR$ [/mm] sagen:

    [mm] $a^3=c*a$ [/mm]

    [mm] $\iff a^3-ca=0$ [/mm]

    [mm] $\iff a*(a^2-c)=0\,.$ [/mm]

Ein Produkt in [mm] $\IR$ [/mm] ist genau dann Null, wenn es einer der beiden Faktoren
ist.
Das führt natürlich auf die gleiche Lösungsmenge.

Gruß,
  Marcel

Bezug
                
Bezug
Umstellung nach a: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Do 23.10.2014
Autor: micha20000

Das bedeutet, ich muss hier durch a rechnen und habe dann:

[mm] 12=a^2 [/mm]

ist das so richtig? (a muss in dieser Aufgabenstellung ungleich 0 sein).

Bezug
                        
Bezug
Umstellung nach a: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Do 23.10.2014
Autor: MathePower

Hallo micha20000,

> Das bedeutet, ich muss hier durch a rechnen und habe dann:
>  
> [mm]12=a^2[/mm]
>  
> ist das so richtig? (a muss in dieser Aufgabenstellung
> ungleich 0 sein).


Ja, das ist nach der Aufgabenstellung richtig. [ok]


Gruss
MathePower

Bezug
                        
Bezug
Umstellung nach a: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Do 23.10.2014
Autor: Marcel

Hallo,

> Das bedeutet, ich muss hier durch a rechnen und habe dann:
>  
> [mm]12=a^2[/mm]
>  
> ist das so richtig? (a muss in dieser Aufgabenstellung
> ungleich 0 sein).

und wie geht's weiter?

(Tipp: Am besten rechnet man

    [mm] $\iff$ $(a^2-12)=0$ $\iff$ $(a+\sqrt{12})*(a-\sqrt{12})=0\,.$ [/mm]

Diese Vorgehensweise erklärt nämlich sofort, warum für $p [mm] \ge [/mm] 0$

    [mm] $a^2=p$ [/mm]

    [mm] $\iff$ $a=\pm \sqrt{p}\,.$ [/mm]

Eine Alternative dazu gibt es auch, aber dann muss man [mm] $\sqrt{a^2}=|a|$ [/mm] benutzen...)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]