matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenUmwandlung in Polarform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Umwandlung in Polarform
Umwandlung in Polarform < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umwandlung in Polarform: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:27 Do 29.04.2010
Autor: lzaman

Aufgabe
geg.: [mm] \underline{Z} [/mm] = [mm] (2+2j)e^{\bruch{\pi}{6}} [/mm]

ges.: [mm] re^{j\varphi} [/mm]  

Mit Taschenrechner gelöst: [mm] \approx 4,78e^{j45°} [/mm]

Wie kann man diese Umformung ohne Taschenrechner machen? Muss man hier wirklich mit so krummen Zahlen (3,37618359...)- also [mm] 2*e^{\bruch{\pi}{6}} [/mm] - rechnen?



Bemerkung: hier ist die Zahl e gemeint!  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Umwandlung in Polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Do 29.04.2010
Autor: Marcel08

Hallo!


> geg.: [mm]\underline{Z}[/mm] = [mm](2+2j)e^{\bruch{\pi}{6}}[/mm]
>
> ges.: [mm]re^{j\varphi}[/mm]
> Mit Taschenrechner gelöst: [mm]\approx 4,78e^{j45°}[/mm]
>  
> Wie kann man diese Umformung ohne Taschenrechner machen?
> Muss man hier wirklich mit so krummen Zahlen
> (3,37618359...)- also [mm]2*e^{\bruch{\pi}{6}}[/mm] - rechnen?



Es gilt: [mm] z=x+iy=r(cos(\varphi)+i sin(\varphi))=re^{i\varphi}, [/mm] mit [mm] |z|=r=\wurzel{x^{2}+y^{2}} [/mm] und [mm] i\in\IC [/mm]



> Bemerkung: hier ist die Zahl e gemeint!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.





Gruß, Marcel

Bezug
                
Bezug
Umwandlung in Polarform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Do 29.04.2010
Autor: lzaman

Hallo, die Beziehungen sind mir klar. Ich habe eher gedacht mit der Zahl e hat es mehr auf sich in [mm] \IC. [/mm]

Dann ist diese Aufgabe ohne Taschenrechner nicht zu lösen oder?

Habe jetzt herausgefunden, dass [mm] cos(e^{\bruch{\pi}{6}})\approx [/mm] 1 ist.


Ausserdem kann ich noch folgendes machen:

[mm] tan^{-1}(\bruch{2*e^\bruch{\pi}{6}}{2*e^\bruch{\pi}{6}}) [/mm] = [mm] tan^{-1} [/mm] (1) = 45° damit wäre der Winkel ohne Taschenrechner zu bestimmen!

suche noch nach einfacher Bestimmung für r. Es geht mir also um den Term [mm] (2*e^\bruch{\pi}{6})^2 [/mm] .
Kann man diesen weiter vereinfachen?

Bezug
                        
Bezug
Umwandlung in Polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Fr 30.04.2010
Autor: Herby

Hi,

ich würde das hier gar nicht versuchen auszurechnen, sondern

[mm] r=\wurzel{8}*e^{\frac{\pi}6} [/mm]

stehen lassen. Zahl ist Zahl :-)


LG
Herby

Bezug
                                
Bezug
Umwandlung in Polarform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 Fr 30.04.2010
Autor: lzaman

Ja soweit war ich auch schon habe es vereinfacht bis auf

[mm] \wurzel{8*e^{\bruch{\pi}{3}}} [/mm]

Weiter komme ich nicht.

Danke

Bezug
        
Bezug
Umwandlung in Polarform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 Fr 30.04.2010
Autor: lzaman

Gerade wurden die Lösungen veröffentlicht, und meine Rechnung ist richtig. War irgendwie zwecklos sich so langen einen Kopf darüber zu machen.

Danke nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]