Umwandlung sinus / cosinus < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:03 Mo 08.02.2016 | Autor: | amd-andy |
Aufgabe | In der unten genannten Aufgabe, werden die zwei Bereiche in eckigen Klammern in meinem Script als "ungerade" bezeichnet und fallen in der nächste Zeile raus... Leider fällt mir dazu nicht ein, warum das so ist!? Danke schon mal für eure Hilfe! |
[mm] \integral_{-\pi /2}^{\pi /2}{(2\wurzel{2}[cos^2(t)sin(t)]+\wurzel{2}cos^2(t)-\wurzel{2}[sin^3(t)]-\wurzel{2}sin^2(t))dt}=
[/mm]
[mm] \wurzel{2}\integral_{-\pi/2}^{\pi/2}{cos^2(t)dt}-\wurzel{2}\integral_{-\pi/2}^{\pi/2}{sin^2(t)dt}=
[/mm]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:24 Mo 08.02.2016 | Autor: | chrisno |
Schau Dir das Intervall an, über das integriert wird.
Wenn Funktionen ungerade sind, dann liegen sie im Bereich <0 genau so viel unter der x-Achse, wie sie im Bereich >0 über der x-Achse liegen. Also hebt sich das beim Integrieren weg.
|
|
|
|
|
Voraussetzung dafür ist, dass - wie hier - linke und rechte Integrationsgrenze gleich weit vom Ursprung entfernt sind. Dann sehen die Flächen links und rechts vom Ursprung zwischen Graph und x-Achse genau so aus (um 180 ° um den Ursprung gedreht), haben aber per Integral das entgegengesetzte Vorzeichen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:55 Di 09.02.2016 | Autor: | fred97 |
Meine Vorredner haben anschauliche Erklärungen gegeben, die eigentlich genügen.
Wenn Du an einer rechnerischen Erklärung interessiert bist, dann hätte ich das:
Sei a>0 und $f:[-a,a] [mm] \to \IR$ [/mm] eine Riemannintegrierbare Funktion. Weiter sei f ungerade, das bedeutet f(x)=-f(-x) für alle $x [mm] \in [/mm] [-a,a]$.
Dann ist [mm] \integral_{-a}^{0}{f(x) dx}=\integral_{-a}^{0}{(-f(-x)) dx}.
[/mm]
Mit der Substitution $t=-x$ bekommt man
[mm] \integral_{-a}^{0}{f(x) dx}=\integral_{-a}^{0}{(-f(-x)) dx}=\integral_{a}^{0}{f(t) dt}=-\integral_{0}^{a}{f(t) dt}=-\integral_{0}^{a}{f(x) dx}
[/mm]
und damit
[mm] \integral_{-a}^{a}{f(x) dx}=\integral_{-a}^{0}{f(x) dx}+\integral_{0}^{a}{f(x) dx}=-\integral_{0}^{a}{f(x) dx}+\integral_{0}^{a}{f(x) dx}=0.
[/mm]
FRED
|
|
|
|