matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieUnabhängigkeit v. Ereignissen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Unabhängigkeit v. Ereignissen
Unabhängigkeit v. Ereignissen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit v. Ereignissen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 So 25.11.2007
Autor: Jennymaus

Aufgabe
Gegeben seien ein Wahrscheinlichkeitsraum und Ereignisse A, B.
Zeigen Sie: Wenn A und B unabhängig sind, dann sind auch
(a) die Ereignisse [mm] A^{c} [/mm] und B unabhängig.
(b) die Ereignisse [mm] A^{c} [/mm] und [mm] B^{c} [/mm] unabhängig.

Hallo!
Ich habe zu dieser Aufgabe folgende Lösung:
(a) [mm] P(A^{c}|B)=\bruch{P(A^{c} \cap B)}{P(B)}=\bruch{P(A^{c})*P(B)}{P(B)}=P(A^{c}) [/mm]
[mm] (b)P(A^{c}|B^{c})= [/mm] wie (a) = [mm] P(A^{c}) [/mm]
Und unter jedem Aufgabenteil den Satz, dass aus der Unabhängigkeitsdefinition aus der Forlesung die Unabhängigkeit der jeweiligen Ereignisse folgt.
Stimmt das oder muss ich das irgendwie anders machen?
Danke schonmal!
Lg, Jenny

        
Bezug
Unabhängigkeit v. Ereignissen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Mo 26.11.2007
Autor: luis52

Moin  Jenny,


ich muss dich enttaeuschen, deine Loesung ist nicht korrekt, denn du
hast ja die Voraussetzung nicht ausgenutzt, dass $A$ und $B$
unabhaengig sind. Ausserdem musst du beispielsweise zeigen, dass gilt
[mm] $P(A^{c}\cap B)=P(A^{c})P(B)$. [/mm] Dein Ansatz funktioniert nur,
wenn gilt $P(B)>0$, was nicht allgemein genug ist.

Versuche mal eine Wahrscheinlichkeitstabelle zu erstellen:

https://matheraum.de/read?t=312174

Dann ist die Loesung ein Klacks. Bedenke, dass du in der Zelle mit
[mm] $P(A\cap [/mm] B)$ das Produkt $pq$ schreiben darfst mit $p=P(A)$ und
$q=P(B)$. Was folgt dann fuer den Rest?

lg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]