matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUneigentl. Integral (Konv.)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Uneigentl. Integral (Konv.)
Uneigentl. Integral (Konv.) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentl. Integral (Konv.): Tipp
Status: (Frage) beantwortet Status 
Datum: 21:42 Mo 17.12.2012
Autor: Lustique

Aufgabe
Für $j=1, 2, 3$ sei [mm] $f_j\colon \mathbb{R}\to \mathbb{C}$. [/mm] Geben Sie in den folgenden Teilaufgaben jeweils die Menge aller [mm] $p\in[1, \infty]$ [/mm] an, so dass [mm] $f_j\in\mathcal{L}^p(\mathbb{R})$, [/mm] $j=1, 2, 3$, gilt.

... ii) [mm] $f_2(x)=\frac{1}{(1+x^2)^\frac{1}{2}}$ [/mm] iii) ...



Hallo mal wieder,
mein konkretes Problem ist das Folgende:

Es geht ja für [mm] $1\leqslant [/mm] p [mm] <\infty$ [/mm] um die Berechnung von [mm] $\int_\mathbb{R} |f_2(x)|^p\operatorname{d}x$. [/mm]

(Für [mm] $p=\infty$ [/mm] ist es ja klar, denn [mm] $f_2$ [/mm] ist ja eindeutig durch 1 beschränkt.) Für [mm] $p\geqslant [/mm] 2$ ist [mm] $\int_\mathbb{R} |f_2(x)|^p \operatorname{d}x <\infty$ [/mm] ja auch klar, weil ja [mm] $\int_\mathbb{R} |f_2(x)|^p \operatorname{d}x=2\int_0^\infty |f_2(x)|^p \operatorname{d}x$ [/mm] und [mm] $|f_2(x)|^p$ [/mm] monoton fällt für [mm] $p\to \infty$, [/mm] und [mm] $\int_\mathbb{R} |f_2(x)|^2 \operatorname{d}x =\pi$, [/mm] wodurch sich das Integral für [mm] $p\geqslant [/mm] 2$ abschätzen lässt. Für $p=1$ lässt sich das Integral ja auch noch recht bequem ausrechnen nachgucken, denn es ist ja [mm] $\int \frac{1}{\sqrt{1+x^2}}\operatorname{d}x=\operatorname{arsinh}(x)+C$, [/mm] und damit ist  [mm] $\int_\mathbb{R} |f_2(x)|^1 \operatorname{d}x=\infty$. [/mm]

Wie gehe ich jetzt aber für $1<p<2$ vor? Nach ein bisschen rumprobieren mit WolframAlpha bin ich zu der Vermutung gekommen, dass die Integrale alle konvergieren, aber ich weiß nicht, wie ich das zeigen soll.

Habt ihr vielleicht einen Tipp für eine passende Abschätzung, oder lassen sich die Integrale konkret berechnen?

        
Bezug
Uneigentl. Integral (Konv.): Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Mo 17.12.2012
Autor: Leopold_Gast

Sei [mm]p>1[/mm]. Für [mm]x \geq 1[/mm] kann man abschätzen:

[mm]\frac{1}{\left( 1 + x^2 \right)^{\frac{p}{2}}} < \frac{1}{\left( x^2 \right)^{\frac{p}{2}}} = \frac{1}{x^p}[/mm]

Das Integral [mm]\int_1^{\infty} \frac{\mathrm{d}x}{x^p}[/mm] konvergiert aber.

Bezug
                
Bezug
Uneigentl. Integral (Konv.): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Sa 29.12.2012
Autor: Lustique


> Sei [mm]p>1[/mm]. Für [mm]x \geq 1[/mm] kann man abschätzen:
>  
> [mm]\frac{1}{\left( 1 + x^2 \right)^{\frac{p}{2}}} < \frac{1}{\left( x^2 \right)^{\frac{p}{2}}} = \frac{1}{x^p}[/mm]
>  
> Das Integral [mm]\int_1^{\infty} \frac{\mathrm{d}x}{x^p}[/mm]
> konvergiert aber.

Ich habe ganz vergessen mich zu bedanken, also danke! Auch wenn ich darauf wohl selbst hätte kommen können sollen (und können), hat mir das auf jeden Fall weitergeholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]