matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUneigentliche Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Uneigentliche Integrale
Uneigentliche Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Fr 19.06.2009
Autor: unR34L

Aufgabe
Untersuchen Sie, ob die folgenden uneigentlichen Integrale
existieren und bestimmen Sie im Falle der Existenz ihren Wert.

a) [mm] \integral_{1}^{2}{\bruch{1}{x\ln x}dx} [/mm]

b) [mm] \integral_{-1}^{1}{\bruch{1}{\wurzel{|x|}}dx} [/mm]


Hi ! Ich habe mich grade mit den Aufgaben beschäftigt und wollte meine Lösung mal kontrollieren lassen:

zu a)


f(x) = [mm] \bruch{1}{x\ln x} [/mm]
F(x) = [mm] \ln (|\ln [/mm] x|)

[mm] \integral_{1}^{2}{\bruch{1}{x\ln x}dx} [/mm] = [mm] \limes_{c\rightarrow\ 1} \integral_{c}^{2}{\bruch{1}{x\ln x}dx} [/mm] = [mm] \limes_{c\rightarrow\ 1} \ln (|\ln [/mm] 2|) - [mm] \ln (|\ln [/mm] c|)

Für c [mm] \rightarrow [/mm] 1 ist [mm] \ln [/mm] (c) = 0 und [mm] \ln (\ln [/mm] c) nicht definiert, daher existiert der GW nicht und das uneigentliche Integral auch nicht.

zu b)

f(x) [mm] =\bruch{1}{\wurzel{|x|}} [/mm] = [mm] \begin{cases} \bruch{1}{\wurzel{x}} , & \mbox{für } x \mbox{ > 0} \\ \bruch{1}{\wurzel{-x}}, & \mbox{für } x \mbox{ < 0} \end{cases} [/mm]

F(x) = [mm] 2x^{\bruch{1}{2}} [/mm] (für x < 0 und für x > 0 auch)


[mm] \integral_{-1}^{1}{\bruch{1}{\wurzel{|x|}}dx} [/mm] = [mm] \integral_{-1}^{0}{\bruch{1}{\wurzel{|x|}}dx} [/mm] + [mm] \integral_{0}^{1}{\bruch{1}{\wurzel{|x|}}dx} [/mm] = [mm] \limes_{c\rightarrow 0} \integral_{-1}^{c}{\bruch{1}{\wurzel{|x|}}dx} [/mm] + [mm] \limes_{d\rightarrow 0} \integral_{d}^{1}{\bruch{1}{\wurzel{|x|}}dx} [/mm] = [mm] \limes_{c\rightarrow 0} (2c^{\bruch{1}{2}} -2*(-1)^{\bruch{1}{2}}) [/mm] + [mm] \limes_{d\rightarrow 0} [/mm] (2 [mm] -2d^{\bruch{1}{2}}) [/mm]

Und auch der GW existiert nicht, da [mm] (-1)^{\bruch{1}{2}} [/mm] nicht definiert ist.

So, das wärs erstmal, hoffe es sind keine groben Schnitzer drinne.

        
Bezug
Uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Fr 19.06.2009
Autor: abakus


> Untersuchen Sie, ob die folgenden uneigentlichen Integrale
>  existieren und bestimmen Sie im Falle der Existenz ihren
> Wert.
>  
> a) [mm]\integral_{1}^{2}{\bruch{1}{x\ln x}dx}[/mm]
>  
> b) [mm]\integral_{-1}^{1}{\bruch{1}{\wurzel{|x|}}dx}[/mm]
>  
>
> Hi ! Ich habe mich grade mit den Aufgaben beschäftigt und
> wollte meine Lösung mal kontrollieren lassen:
>  
> zu a)
>
>
> f(x) = [mm]\bruch{1}{x\ln x}[/mm]
>  F(x) = [mm]\ln (|\ln[/mm] x|)
>  
> [mm]\integral_{1}^{2}{\bruch{1}{x\ln x}dx}[/mm] =
> [mm]\limes_{c\rightarrow\ 1} \integral_{c}^{2}{\bruch{1}{x\ln x}dx}[/mm]
> = [mm]\limes_{c\rightarrow\ 1} \ln (|\ln[/mm] 2|) - [mm]\ln (|\ln[/mm] c|)
>  
> Für c [mm]\rightarrow[/mm] 1 ist [mm]\ln[/mm] (c) = 0 und [mm]\ln (\ln[/mm] c) nicht
> definiert, daher existiert der GW nicht und das
> uneigentliche Integral auch nicht.
>  
> zu b)
>  
> f(x) [mm]=\bruch{1}{\wurzel{|x|}}[/mm] = [mm]\begin{cases} \bruch{1}{\wurzel{x}} , & \mbox{für } x \mbox{ > 0} \\ \bruch{1}{\wurzel{-x}}, & \mbox{für } x \mbox{ < 0} \end{cases}[/mm]

Hallo,
aufgrund der Achsensymmetrie gilt [mm]\integral_{-1}^{1}{\bruch{1}{\wurzel{|x|}}dx}[/mm] = 2[mm]\integral_{0}^{1}{\bruch{1}{\wurzel{|x|}}dx}[/mm] = [mm] 2\integral_{0}^{1}{\bruch{1}{\wurzel{x}}dx} [/mm]

>  
> F(x) = [mm]2x^{\bruch{1}{2}}[/mm] (für x < 0 und für x > 0 auch)

Der Grenzwert für [mm] 2\wurzel{x} [/mm] für x gegen Null existiert und ist Null. Also lässt sich auch das Integral berechnen.
Gruß Abakus

>  
>
> [mm]\integral_{-1}^{1}{\bruch{1}{\wurzel{|x|}}dx}[/mm] =
> [mm]\integral_{-1}^{0}{\bruch{1}{\wurzel{|x|}}dx}[/mm] +
> [mm]\integral_{0}^{1}{\bruch{1}{\wurzel{|x|}}dx}[/mm] =
> [mm]\limes_{c\rightarrow 0} \integral_{-1}^{c}{\bruch{1}{\wurzel{|x|}}dx}[/mm]
> + [mm]\limes_{d\rightarrow 0} \integral_{d}^{1}{\bruch{1}{\wurzel{|x|}}dx}[/mm]
> = [mm]\limes_{c\rightarrow 0} (2c^{\bruch{1}{2}} -2*(-1)^{\bruch{1}{2}})[/mm]
> + [mm]\limes_{d\rightarrow 0}[/mm] (2 [mm]-2d^{\bruch{1}{2}})[/mm]
>  
> Und auch der GW existiert nicht, da [mm](-1)^{\bruch{1}{2}}[/mm]
> nicht definiert ist.
>  
> So, das wärs erstmal, hoffe es sind keine groben Schnitzer
> drinne.


Bezug
                
Bezug
Uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Fr 19.06.2009
Autor: unR34L

Ahh ok danke, dann werd ich die b nochmal überarbeiten. Ist die a) wenigstens richtig ?


zur b) nochmal:

[mm] 2\integral_{0}^{1}{\bruch{1}{\wurzel{x}}dx} [/mm] = 2 [mm] \limes_{c\rightarrow 0}\integral_{c}^{1}{\bruch{1}{\wurzel{x}}dx} [/mm] = [mm] 2(\limes_{c\rightarrow 0}(2-2c^{\bruch{1}{2}})) [/mm] = 2*2 = 4

Bezug
                        
Bezug
Uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Fr 19.06.2009
Autor: schachuzipus

Hallo unRE4L,

> Ahh ok danke, dann werd ich die b nochmal überarbeiten. Ist
> die a) wenigstens richtig ? [ok]
>  
>
> zur b) nochmal:
>  
> [mm]2\integral_{0}^{1}{\bruch{1}{\wurzel{x}}dx}[/mm] = 2
> [mm]\limes_{c\rightarrow 0}\integral_{c}^{1}{\bruch{1}{\wurzel{x}}dx}[/mm]
> = [mm]2(\limes_{c\rightarrow 0}(2-2c^{\bruch{1}{2}}))[/mm] = 2*2 = 4 [ok]

Bestens

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]