matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungUneigentliche Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Uneigentliche Integrale
Uneigentliche Integrale < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliche Integrale: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:17 Mo 06.02.2012
Autor: hubbel

Aufgabe
http://www.myimg.de/?img=mathe3d82e6.jpg

Bräuchte mal einen Tipp, wie ich da rangehe, habe erstmal an Substitution gedacht mit [mm] z=x^2+1, [/mm] aber dann bleibt der Rest vom Nenner ja noch stehen, hat jemand eine Idee?

        
Bezug
Uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Mo 06.02.2012
Autor: fred97


> http://www.myimg.de/?img=mathe3d82e6.jpg
>  Bräuchte mal einen Tipp, wie ich da rangehe, habe erstmal
> an Substitution gedacht mit [mm]z=x^2+1,[/mm] aber dann bleibt der
> Rest vom Nenner ja noch stehen, hat jemand eine Idee?

Tipp: Partialbruchzerlegung.

FRED


Bezug
                
Bezug
Uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Mo 06.02.2012
Autor: hubbel

Ok, das geht also doch, jetzt noch eine Frage und zwar zur doppelten Nullstelle, passt mein Ansatz so?

[mm] \bruch{Ax+B}{x^2+1}+\bruch{Cx}{(x-1)^2}=\bruch{-2x}{(x^2+1)(x-1)^2} [/mm]


Bezug
                        
Bezug
Uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Mo 06.02.2012
Autor: fred97


> Ok, das geht also doch, jetzt noch eine Frage und zwar zur
> doppelten Nullstelle, passt mein Ansatz so?
>  
> [mm]\bruch{Ax+B}{x^2+1}+\bruch{Cx}{(x-1)^2}=\bruch{-2x}{(x^2+1)(x-1)^2}[/mm]

Dieser Ansatz idt nicht richtig !

Richtig:

               [mm] \bruch{-2x}{(x^2+1)(x-1)^2}= \bruch{Ax+B}{x^2+1}+\bruch{C}{x-1}+\bruch{D}{(x-1)^2} [/mm]

FRED


>  


Bezug
                                
Bezug
Uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Mo 06.02.2012
Autor: hubbel

Noch eine allgemeine Frage:

Wenn ich beispielsweise die 0 als doppelte Nullstelle hätte, würde das dann so aussehen?

[mm] ...=...+...+\bruch{C}{x}+\bruch{D}{x^2} [/mm]

Und wenn ich eine dreifache Nullstelle hätte, z.B. die 1:

[mm] ...=...+...+\bruch{C}{(x-1)}+\bruch{D}{(x-1)^2}+\bruch{E}{(x-1)^3} [/mm]

Würde das so stimmen?

Bezug
                                        
Bezug
Uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Mo 06.02.2012
Autor: fred97


> Noch eine allgemeine Frage:
>  
> Wenn ich beispielsweise die 0 als doppelte Nullstelle
> hätte, würde das dann so aussehen?
>  
> [mm]...=...+...+\bruch{C}{x}+\bruch{D}{x^2}[/mm]

Ja


>  
> Und wenn ich eine dreifache Nullstelle hätte, z.B. die 1:
>  
> [mm]...=...+...+\bruch{C}{(x-1)}+\bruch{D}{(x-1)^2}+\bruch{E}{(x-1)^3}[/mm]
>  
> Würde das so stimmen?

Ja

FRED


Bezug
                                                
Bezug
Uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Mo 06.02.2012
Autor: hubbel

Ok, habe nun:

[mm] -2x=(Ax+B)(x^2-2x+1)+C(x^3-x^2+x-1)+D(x^2+1) [/mm]

[mm] -2x=Ax^3-2Ax^2+Ax+Bx^2-2Bx+B+Cx^3-Cx^2+Cx-C+Dx^2+D [/mm]

[mm] -2x=x^3(A+C)+x^2(B-2A-C+D)+x(A-2B+C)+(B-C+D) [/mm]

=>

A+C=0
B-2A-C+D=0
A-2B+C=-2
B-C+D=0

=>

A=0
B=1
C=0
D-1

=>

[mm] \int_{a}^{b} \bruch{1}{x^2+1}\, dx+\int_{a}^{b} \bruch{1}{x^2-2x+1}\, [/mm] dx

Das erste wäre der arctan(x), aber wie gehe ich an das zweite Integral ran? Kann ich da nochmal eine Partialbruchzerlegung machen? Eigentlich nicht oder?

Bezug
                                                        
Bezug
Uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Mo 06.02.2012
Autor: fred97


> Ok, habe nun:
>  
> [mm]-2x=(Ax+B)(x^2-2x+1)+C(x^3-x^2+x-1)+D(x^2+1)[/mm]
>  
> [mm]-2x=Ax^3-2Ax^2+Ax+Bx^2-2Bx+B+Cx^3-Cx^2+Cx-C+Dx^2+D[/mm]
>  
> [mm]-2x=x^3(A+C)+x^2(B-2A-C+D)+x(A-2B+C)+(B-C+D)[/mm]
>  
> =>
>
> A+C=0
>  B-2A-C+D=0
>  A-2B+C=-2
>  B-C+D=0
>  
> =>
>  
> A=0
>  B=1
>  C=0
>  D-1



Ich habs nicht nachgerechnet ! Aber Du meinst sicher D=1.

>  
> =>
>  
> [mm]\int_{a}^{b} \bruch{1}{x^2+1}\, dx+\int_{a}^{b} \bruch{1}{x^2-2x+1}\,[/mm]
> dx
>  
> Das erste wäre der arctan(x), aber wie gehe ich an das
> zweite Integral ran? Kann ich da nochmal eine
> Partialbruchzerlegung machen?


Ne ! Das bringt doch nichts !  Es ist [mm] x^2-2x+1=(x-1)^2 [/mm]   . Substituiere t=x-1

FRED

> Eigentlich nicht oder?


Bezug
                                                                
Bezug
Uneigentliche Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 Mo 06.02.2012
Autor: hubbel

$ [mm] \int_{a}^{b} \bruch{1}{x^2+1}\, dx-\int_{a}^{b} \bruch{1}{x^2-2x+1}\, [/mm] $

D=-1 hab mich verschrieben:

Habe als Integral [mm] arctan(x)+\bruch{1}{x-1}: [/mm]

Mit den Grenzen dann:

[mm] arctan(b)+\bruch{1}{b-1}-(arctan(0)-1) [/mm]

Mit b gegen unendlich folgt:

[mm] \pi/2+1 [/mm] ist der Grenzwert.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]