matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUnendliche Summen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Unendliche Summen
Unendliche Summen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unendliche Summen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Fr 21.11.2008
Autor: Stealthed2

Aufgabe
Zeigen Sie, dass die folgenden Reihen konvergieren und bestimmen Sie ihren Grenzwert:

[mm] \summe_{n=1}^{\infty}(-1)^{n}*\bruch{2n+1}{n(n+1)} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,
hier geht es eigentlich eher um die grundsätzliche Frage wie man solche Aufgaben zu lösen hat... wir haben mehrere von denen und ich hoffe einfach, dass wenn mir jemand zeigt wie man sowas angeht ich die anderen auch hinbekomme..
ich werde aus dem Script, welches wir zur Vorlesung haben einfach nicht schlau... da steht irgendwas von in Partialsummen aufteilen, usw - aber was das genau ist hat der Professor nie erklärt... habe den ganzen Tag versucht was rauszufinden dazu aber jetzt bin ich kurz vorm resignieren..

Wie rechnet man den Lim für unendliche Summen aus ?
Wir hatten da irgendwas mit [mm] a_{k} [/mm] und... dann war plötzlich ein k in der Summe, von dem ich nicht weiß wo es herkam usw...

ich hoffe die Frage ist nicht zu allgemein gestellt und mir kann jemand helfen... ich weiß echt nicht mehr weiter.

DANKE !

        
Bezug
Unendliche Summen: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Fr 21.11.2008
Autor: barsch

Hi,

eine sehr umfangreiche Frage. Eine umfassende Antwort zu geben, ist unmöglich. Deswegen will ich dir nur einen Rat geben. Ich glaube dir, dass dein Skript nicht zum Verständnis beiträgt - dieses Problem kenne ich auch.

Es gibt verschiedene Konvergenzkriterien für Reihen: Quotienten-, Majoranten-, Minoranten-, Leibnizkriterium etc. Versuche dir wenigstens diese Begriffe aus deinem Skript zu schreiben. Dann würde ich den Artikel bei Wikipedia des entsprechenden Kriteriums durchlesen. Meist sind dort Beispiele gegeben. Was ich sehr empfehlen kann, ist das Buch Analysis 1 von Forster. Dort wird das gut erklärt.

> habe den ganzen Tag versucht
> was rauszufinden dazu aber jetzt bin ich kurz vorm
> resignieren..

Nicht aufgeben. Durchhalten. Du musst dich ausführlich damit beschäftigen. Eine weitere Möglichkeit, nach Analysis 1-Skripten im Internet suchen.
Sorry, dass ich dir jetzt keine "Anleitung" im Umgang mit Konvergenzkriterien geben konnte.

Zum deinem Beispiel: Das würde ich mit dem Leibniz-Kriterium versuchen.

MfG barsch

Bezug
                
Bezug
Unendliche Summen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 Fr 21.11.2008
Autor: Stealthed2

hmm auf jeden fall erstmal danke für deine mühe... ich werde mir die ganzen kriterien mal ansehen (auch wenn wir noch nicht viel davon im script bearbeitet haben bislang)
problem ist allerdings dass ich auch den grenzwert bestimmen muss - mit dem leibniz-kriterium kann ich allerdings nur sagen, DASS die Reihe konvergiert, jedoch nicht wogegen..
wie finde ich das raus ? :)

Bezug
                        
Bezug
Unendliche Summen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:19 Fr 21.11.2008
Autor: leduart

Hallo
hier die Partialbruchzerlegung: A/n+B/(n+1)=(2n+1)/(n*(n+1)
A und B durch Koeffizientenvergleich bestimmen.
Dann mal 2 oder 3 aufeinanderfolgende Glieder ohne Ausrechnen hins!
Du musst posts schon wirklich lesen, und notfalls nachfragen!
Gruss leduart

Bezug
        
Bezug
Unendliche Summen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Fr 21.11.2008
Autor: leduart

Hallo
Grundsaetzliches Vorgehen haengt vom Typ der Reihe ab.
1.Als erstes ueberprueft man das notwendige Kriterium, bilden die Summanden ein Nullfolge. Wenn nicht garantiert divergent
2. irgendwo ein [mm] (-a)^k [/mm]  Leibnitz Reihe konvergiert wenn 1. ueberprueft.
3. Seh ich direkt ne aehnliche Reihe , von der ich weiss, dass sie konvergiert oder divergiert.
Also meistens Vergleich mit der harmonischen Reihe [mm] (a_n=1/n) [/mm]  dann divergent
mit geom. Reihe [mm] a_n=q^n [/mm] q<1 dann konvergent.
4. Quotientenkriterium
5. Wurzelkriterium.
Wenn man die Summe auch noch bestimmen soll wie hier:
a) Partialbruchzerlegung, dann gibts meistens ne Teleskopsumme d.h. fast alles hebt sich weg. kann man auch sehen, wenn man die ersten paar glieder hinschreibt.
b) suchen, ob man nicht ne summenformel fuer beinahe dasselbe kennt,: Reihe fur [mm] e^x, [/mm] geometrische Reihe,

Das sind so die Grundrezepte nd dann heissts einfach erfahrungen sammeln.
Gruss leduart

Bezug
                
Bezug
Unendliche Summen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Fr 21.11.2008
Autor: Stealthed2

edit:

hat sich erledigt... hab das problem gelöst..

vielen dank für eure hilfe !!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]