matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreUnendlichkeit / Injektion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mengenlehre" - Unendlichkeit / Injektion
Unendlichkeit / Injektion < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unendlichkeit / Injektion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:18 Mo 30.11.2009
Autor: valoo

Aufgabe
Zeigen Sie: Eine Menge M ist genau dann unendlich, wenn es eine Injektion von [mm] \IN [/mm] nach M gibt.
Zur Erinnerung: Eine Menge ist unendlich, wenn [mm] card(M)\not=card(p) [/mm] für alle [mm] p\in\IN. [/mm]

Irgendwie stört mich die zu Grunde legende Definition von Unendlichkeit ein wenig.
Ich versuch mich erstmal an der Hinrichtung:
"=>"
Sei [mm] card(M)=\infty [/mm]
Setze [mm] M:=\{x_{i} | i,j\in\IN:x_{i}\not=x_{j}; j\not=i\} [/mm]
wobei ich mich frage ob ich eine unendliche Menge so definieren darf, da ja Abzählbarkeit vorrausgesetzt wird. Vielleicht ist es besser eine neue Menge zu brachten, M vereinigt mit einer beliebigen Menge, wobei das Bild der folgenden Abbildung allerdings nur M wäre.
Definiere
[mm] \phi:\IN \to [/mm] M
[mm] n\mapsto x_{n} [/mm]
Diese Abbildung ist offensichtlich injektiv.

"<="
Sei nun f injektiv.
=> Es existieren m in M mit für alle n in N ist [mm] f(n)\not=m [/mm] oder für alle n in N existiert genau ein m in M mit f(n)=m.
Ersteres => [mm] card(M)>=card(\IN) [/mm] => [mm] card(M)=\infty [/mm]
Zweiteres => f bijektiv => [mm] card(M)=card(\IN)=\infty [/mm]

Ich bin mir wirklich unsicher dabei. Darf ich einfach annehmen, dass die Menge der natürlichen Zahlen unendlich ist? Oder muss ich auch zeigen, dass [mm] \IN [/mm] zu keinem ihrer Elemente gleichmächtig ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Unendlichkeit / Injektion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 03.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]