matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisUngleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Ungleichung
Ungleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 15:01 Mo 17.01.2005
Autor: DrOetker

Hallo!
Habe folgende Ungleichung:

[mm] \bruch {\left| x^2-4 \right|}{x+2} \ge [/mm] x

Wie ist hierfür der Lösungsweg?
Müsste doch eigentlich die Definitionsmenge bestimmen und unter Beachtung der Hauptnenners vier Fälle ausrechnen. Welche Bedeutung haben jetzt aber die Betragsschriche???

        
Bezug
Ungleichung: Hinweise
Status: (Antwort) fertig Status 
Datum: 15:12 Mo 17.01.2005
Autor: Loddar

Hallo DrOetker!

> [mm]\left| \bruch {x^2-4} {x+2} \right| \ge x[/mm]
>  
> Wie ist hierfür der Lösungsweg?
> Müsste doch eigentlich die Definitionsmenge bestimmen ...

[daumenhoch]


Tipp:
Versuch' doch mal den Zähler zu faktorisieren und dann evtl. den Bruch zu vereinfachen.

Mit den Betragsstrichen mußt Du dann eine Fallunterscheidung machen, da ja gilt:  [mm] |z|\;=\;\begin{cases} z, & \mbox{für } z \ge 0 \mbox{} \\ -z, & \mbox{für } z < 0 \mbox{} \end{cases} [/mm]


Kommst Du nun alleine weiter?

Grüße
Loddar


Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Fr 21.01.2005
Autor: DrOetker

Hallo Loddar!
Endlich komme ich dazu mir die Aufgabe noch einmal anzugucken.
Leider hast du die Aufgabe nicht ganz richtig gelesen. Sie lautete

[mm] \bruch {\left| x^2-4 \right|}{x+2} \ge [/mm] x

[mm] Def=Q\{-2} [/mm]

Nun müsste ich doch vier Fälle lösen
1. x>-2
1.1 ...
1.2 ...

2. x<-2
2.1 ...
2.2 ...

Nun frage ich mich wie die Bedingungen für diese Unterfälle lauten, also für die Betragsteile. Das mit dem Faktorisieren habe ich verstanden, aber mit diesen zusammengesetzten Unterlösungen komme ich irgendwie immer durcheinander.
Kannst du mir diesbezüglich nocheinmal helfen, damit ich zu einer rechnerischen Lösung komme?

Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Sa 22.01.2005
Autor: Marc

Hallo DrOetker,

>  Leider hast du die Aufgabe nicht ganz richtig gelesen. Sie
> lautete
>  
> [mm]\bruch {\left| x^2-4 \right|}{x+2} \ge[/mm] x
>  
> [mm]Def=Q\{-2} [/mm]

Du bist ja ein Scherzkeks, du hast die Frage doch selbst nachträglich verändert.
  

> Nun müsste ich doch vier Fälle lösen
>  1. x>-2
>  1.1 ...
>  1.2 ...
>  
> 2. x<-2
>  2.1 ...
>  2.2 ...
>  
> Nun frage ich mich wie die Bedingungen für diese Unterfälle
> lauten, also für die Betragsteile. Das mit dem
> Faktorisieren habe ich verstanden, aber mit diesen
> zusammengesetzten Unterlösungen komme ich irgendwie immer
> durcheinander.
>  Kannst du mir diesbezüglich nocheinmal helfen, damit ich
> zu einer rechnerischen Lösung komme?

Streng formal könntest du so beginnen:
[mm] $\bruch {\left| x^2-4 \right|}{x+2} \ge [/mm] x$

[mm] $\gdw$ $\bruch {\left| (x-2)(x+2)|}{x+2} \ge [/mm] x$

[mm] $\gdw$ $(\star)$ [/mm]
Nun überlege ich mir die Fallunterscheidungen anhand des Betrages:

Fall 1: [mm] $(x-2)(x+2)\ge0$ $\gdw$ ($x-2\le0$ [/mm] und [mm] $x+2\le0$) [/mm] oder [mm] ($x-2\ge0$ [/mm] und [mm] $x+2\ge0$) $\gdw$ ($x\le2$ [/mm] und [mm] $x\le-2$) [/mm] oder [mm] ($x\ge2$ [/mm] und [mm] $x\ge-2$) $\gdw$ $x\le-2$ [/mm] oder [mm] $x\ge2$ [/mm]

[mm] $(\star)$ $\gdw$ $\bruch {x^2-4}{x+2} \ge [/mm] x$
[mm] $\gdw$ [/mm] $x-2  [mm] \ge [/mm] x$
[mm] $\gdw$ [/mm] ...

Fall 2: $(x-2)(x+2)<0$ [mm] $\gdw$ [/mm] ($x-2<0$ und $x+2>0$) oder ($x-2>0$ und $x+2<0$) [mm] $\gdw$ [/mm] ...

[mm] $(\star)$ $\gdw$ $-\bruch {x^2-4}{x+2} \ge [/mm] x$
[mm] $\gdw$ [/mm] ...

Der Rest dürfte dann klar sein.

Viele Grüße,
Marc


Bezug
                                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:09 Mi 26.01.2005
Autor: DrOetker

Morgen Marc!
Lange hat es geadauert, aber endlich macht sich der Aha-Effekt in meinem Gesicht breit.
Son Dreck! Ist ja im Prinzip echt einfach.
Danke für die Hilfe!

Bezug
        
Bezug
Ungleichung: Grafische Lösung
Status: (Antwort) fertig Status 
Datum: 22:41 Mo 17.01.2005
Autor: dominik

Diese Ungleichung beinhaltet einige Fallunterscheidungen
- wegen den Betragsbalken und
- wegen des Nenners x+2, womit man zwar erweitern kann, aber je nach Vorzeichen die Relation von  [mm] \ge [/mm] zu  [mm] \le [/mm] geändert werden muss.

Deshalb scheint mir eine grafische Lösung zweckmässig.
Idee:
1. Fall:
[mm]\bruch {\left| x^2-4 \right|}{x+2} \ge x \Rightarrow \left| x^2-4 \right|\ge x*(x+2)[/mm] wenn [mm]x+2>0 \gdw x>-2[/mm]
(Der Fall [mm]x=-2[/mm] kommt wegen des Nenners [mm]x+2[/mm] nicht in Frage)
2. Fall:
[mm]\bruch {\left| x^2-4 \right|}{x+2} \le x \Rightarrow \left| x^2-4 \right|\le x*(x+2)[/mm] wenn [mm]x+2<0 \gdw x<-2[/mm]
(Division durch eine negative Zahl: Relation wechselt)

Für beide Fälle bilden wir zwei Funktionen, nämlich:
[mm]f(x)= \left| x^2-4 \right|[/mm]
[mm]g(x)=x*(x+2)[/mm]

Nun zeichnen wir beide Grafen und untersuchen, für welche x-Werte im 1. Fall [mm]f(x) \ge g(x)[/mm] und im 2. Fall [mm]f(x) \le g(x)[/mm]. f und g schneiden sich in (-2/0) und (1/3).

[mm]f(x)= \left| x^2-4 \right|[/mm] entsteht aus [mm]f(x)= x^2-4[/mm] durch Spiegelung des unteren Teils der Parabel (zwischen -2 und +2) auf die positive Seite der x-Achse. f hat damit eine W-Form mit den Nullstellen bei -2 und +2 und dem Scheitel bei (0/4).
[mm]g(x)=x*(x+2)=x^2+2x[/mm] ist eine nach oben geöffnete Parabel mit den Nullstellen bei -2 und 0; ihr Scheitel hat die Koordinaten (-1/-1).
f und g schneiden sich in (-2/0) und (1/3).

1. Fall: [mm]f(x) \ge g(x)[/mm] für [mm]x>-2[/mm]: Lösung: [mm]-2 2. Fall: [mm]f(x) \le g(x)[/mm] für [mm]x<-2[/mm]: Lösung:  [mm]L=\emptyset[/mm], da in diesem Bereich g unterhalb von f verläuft.

Gesamtlösung: [mm]L: -2
Probe:
[mm]x=-1 \Rightarrow \bruch {\left| x^2-4 \right|}{x+2} \ge x \gdw\bruch {\left| 1-4 \right|}{-1+2} \ge -1 \gdw \bruch {3}{1} \ge -1[/mm] ok
[mm]x=0 \Rightarrow \bruch {\left| x^2-4 \right|}{x+2} \ge x \gdw\bruch {\left| 0-4 \right|}{0+2} \ge 0 \gdw \bruch {4}{2} \ge 0[/mm] ok
[mm]x=1 \Rightarrow \bruch {\left| x^2-4 \right|}{x+2} \ge x \gdw\bruch {\left| 1-4 \right|}{1+2} \ge 1 \gdw \bruch {3}{3} \ge 1[/mm] ok

Viele Grüsse
dominik




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]