matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Ungleichung
Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 21:16 Sa 06.11.2010
Autor: stud-ing

Aufgabe
Welche Lösungen [mm] x\in\IR [/mm] besitzt die folgende Ungleichung:

2x+1/x-2 < 1

Bin auf die Lösungen mit einer Fallunterscheidung von 2 Fällen gekommen

1) x-2>0       2) x-2<0
    x>2               x<2  

Multiplikation mit x-2 ergabe für 1) x<-3
                                                   2) x > -3

Lösungen: -3<x<1

Ist das soweit richtig mit der Fallunterscheidung ? Stimmt die Lösung ?

Danke für schnelle Antworten


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 Sa 06.11.2010
Autor: Melanie-Buwe

Hallo,

na -3 kann aber nicht richtig sein, denn wenn du -3 mal einsetzt dann kommt als Ergebnis = 1 raus...aber die Ungleichung sollte doch kleiner als 1 sein!! oder hast du dich verschrieben?


Bezug
        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Sa 06.11.2010
Autor: MathePower

Hallo stud-ing,


[willkommenmr]


> Welche Lösungen [mm]x\in\IR[/mm] besitzt die folgende Ungleichung:
>  
> 2x+1/x-2 < 1
>  Bin auf die Lösungen mit einer Fallunterscheidung von 2
> Fällen gekommen
>  
> 1) x-2>0       2) x-2<0
>      x>2               x<2  
>
> Multiplikation mit x-2 ergabe für 1) x<-3
>                                                     2) x >

> -3
>  
> Lösungen: -3<x<1
>  
> Ist das soweit richtig mit der Fallunterscheidung ? Stimmt
> die Lösung ?


Fallunterscheidung ist richtig.

Die Lösungsmenge ist aber: [mm]-3 < x < \blue{2}[/mm]


>  
> Danke für schnelle Antworten
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

>


Gruss
MathePower  

Bezug
                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 Sa 06.11.2010
Autor: Al-Chwarizmi

Hallo MathePower,

ich bin etwas erstaunt darüber, dass du das Thema
der falschen Syntax gar nicht ansprichst und einfach
einer (nicht regelgerechten) Interpretation des
Fragestellers in deiner Antwort ohne Kommentar folgst ...

LG    Al

Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Sa 06.11.2010
Autor: Lentio

Hallo,

ich bin bei dieser Aufgabe auch auf die Ergebnisse in der Fallunterscheidung gekommen. Aber, und jetzt kommt das Peinliche, ich konnte nichts damit anfangen!! Wie stelle ich denn meine Lösungsmenge auf? Wie kann denn x gleichzeitig kleiner und größer als -3 sein?

Wie ihr seht, hab ich ein grundlegendes Verständnisproblem.

Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Sa 06.11.2010
Autor: MathePower

Hallo Lentio,

> Hallo,
>  
> ich bin bei dieser Aufgabe auch auf die Ergebnisse in der
> Fallunterscheidung gekommen. Aber, und jetzt kommt das
> Peinliche, ich konnte nichts damit anfangen!! Wie stelle
> ich denn meine Lösungsmenge auf? Wie kann denn x
> gleichzeitig kleiner und größer als -3 sein?
>  
> Wie ihr seht, hab ich ein grundlegendes
> Verständnisproblem.  


Nun, das musst Du bezogen auf die Fälle sehen.

Für Fall 1)  ist x-2  > 0, dies liefert dann x < -3,
also ist die Lösungsmenge [mm]L_{1}=\left\{x \left|\right x > 2 \wedge x < -3 \right\}[/mm]

Für Fall 1)  ist x-2  < 0, dies liefert dann x > -3,
also ist die Lösungsmenge [mm]L_{2}=\left\{x \left|\right x < 2 \wedge x > -3 \right\}[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Sa 06.11.2010
Autor: Lentio

Danke, das hat mir ein wenig Licht ins Dunkle gebracht. Aber wie ziehe ich jetzt aus beiden die allg. gültige Menge? Sie überschneiden sich doch nicht?

Bezug
                                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Sa 06.11.2010
Autor: MathePower

Hallo Lentio,

> Danke, das hat mir ein wenig Licht ins Dunkle gebracht.
> Aber wie ziehe ich jetzt aus beiden die allg. gültige
> Menge? Sie überschneiden sich doch nicht?


Klar, die Lösungsmengen überschneiden sich nicht.

Die in der Menge [mm]L_{1}=\left\{x \left|\right x > 2 \wedge x < -3 \right\} [/mm] festgelegten Bedingungen
sind nicht gleichzeitig erfüllbar, so daß

[mm]L_{1}=\left\{x \left|\right x > 2 \wedge x < -3 \right\}=\left\{\emptyset\right\}[/mm]

Die in der Menge [mm]L_{2}=\left\{x \left|\right x < 2 \wedge x < -3 \right\} [/mm]
festgelegten Bedingungen sind gleichzeitig erfüllbar,
so daß sich die Lösungsmenge zu

[mm]L=L_{2}=\left\{x \left|\right x < 2 \wedge x < -3 \right\} [/mm]

ergibt.

Überprüfe also, ob die im jeweiligen Fall auftretenden
Bedingungen gleichzeitig erfüllt werden können.


Gruss
MathePower

Bezug
                                                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Sa 06.11.2010
Autor: Lentio

Dankschö!

Habs begriffen

Bezug
        
Bezug
Ungleichung: richtig gesetzte Klammern
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Sa 06.11.2010
Autor: Al-Chwarizmi


> Welche Lösungen [mm]x\in\IR[/mm] besitzt die folgende Ungleichung:
>  
> 2x+1/x-2 < 1


Zuallererst solltest du die Ungleichung so notieren,
dass sie unmissverständlich zu lesen ist. So wie sie
da steht, wäre sie korrekterweise so zu lesen:

      $\ [mm] 2*x+\frac{1}{x}-2\ [/mm] <\ 1$

Möglicherweise hast du aber gemeint:

      $\ [mm] \frac{2*x+1}{x-2}\ [/mm] <\ 1$

oder vielleicht auch:

      $\ [mm] 2*x+\frac{1}{x-2}\ [/mm] <\ 1$

oder sogar:

      $\ [mm] \frac{2*x+1}{x}-2\ [/mm] <\ 1$

Wir kennen hier das Phänomen aus Erfahrung, dass
manche User sich der wichtigen Rolle von Klammern
in mathematischen Termen überhaupt nicht bewusst
sind. Wenn du also klar rüberbringen willst, so nutze
ausreichend und richtig gesetzte Klammern oder
setze den eingebauten Formeleditor korrekt ein !


LG     Al-Chw.



Bezug
        
Bezug
Ungleichung: WELCHE Ungleichung ?
Status: (Frage) beantwortet Status 
Datum: 22:40 Sa 06.11.2010
Autor: Al-Chwarizmi

Hallo stud-ing,

wie ich sehe, hast du dich in der Zwischenzeit gar nicht
mehr selber gemeldet.
Eigentlich sollten wir aber doch zumindest von dir selber
erfahren, welche Ungleichung du denn nun wirklich
gemeint hast. Andernfalls ist es ein ziemlich fruchtloses
Spiel, über die Lösung von Ungleichungen zu spekulieren,
die vielleicht gar nicht "gemeint" waren !

Welche Ungleichung soll nun also gelöst werden ?

      1.)      $\ [mm] 2*x+\frac{1}{x}-2\ [/mm] <\ 1$

      2.)      $\ [mm] \frac{2*x+1}{x-2}\ [/mm] <\ 1$

      3.)      $\ [mm] 2*x+\frac{1}{x-2}\ [/mm] <\ 1$

      4.)      $\ [mm] \frac{2*x+1}{x}-2\ [/mm] <\ 1$


LG


Bezug
                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:09 Sa 06.11.2010
Autor: reverend

Hallo Al,

wir werden wahrscheinlich dumm sterben. Lentio scheint ja mit der Aufgabe fertig zu sein. Deine für die Lösung wesentliche Frage lasse ich trotzdem gern noch offen. Vielleicht findet sich ja doch eine Antwort, bis matux mal wieder findet, wir hätten nun alle genug gewartet.

Grüße :-(
reverend


Bezug
                
Bezug
Ungleichung: Korrektur
Status: (Antwort) fertig Status 
Datum: 00:05 So 07.11.2010
Autor: stud-ing

Hallo  Al-Chwarizmi, meinte mit meiner Aufgabe die Variante 2

2.)      $ \ [mm] \frac{2\cdot{}x+1}{x-2}\ [/mm] <\ 1 $

Die erste Antwort zu meiner gestellten Aufgabe, besagt das die Fallunterscheidung sowie das Ergebnisse korrekt ist, trifft das troz meiner fehlerhaften Aufgabenstellung immer noch zu ?

MFG

Bezug
                        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:33 So 07.11.2010
Autor: M.Rex

Hallo

Du hast doch nun eine ganze Menge Tipps bekommen, diese Aufgabe zu lösen.

Wenn du mit (x-2) multiplizierst, brauchst du doch nur die Fallunterscheidung x-2</>0 zu machen.

Marius


Bezug
                        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:10 So 07.11.2010
Autor: Al-Chwarizmi


> Hallo  Al-Chwarizmi, meinte mit meiner Aufgabe die Variante
>  
> 2.)      [mm]\ \frac{2\cdot{}x+1}{x-2}\ <\ 1[/mm]
>  
> Die erste Antwort zu meiner gestellten Aufgabe, besagt das
> die Fallunterscheidung sowie das Ergebnisse korrekt ist,
> trifft das troz meiner fehlerhaften Aufgabenstellung immer
> noch zu ?
>  
> MFG


Ich teile dir mal mit (obwohl ich längst schlafen gegangen bin),
dass die Lösungsmenge dieser Ungleichung ein offenes Intervall
in [mm] \IR [/mm] ist, dessen Grenzen ganzzahlig sind ...

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]