matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenUngleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Komplexe Zahlen" - Ungleichung
Ungleichung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:31 So 21.11.2010
Autor: clee

Aufgabe
versuche gerade einen beweis zu verstehen, in dem folgende ungleichung vorkommt über die ich schon seit ner ewigkeit grübel aber einfach nicht weiterkomm:

für $|z|<R$ und [mm] $|w|\ge2R$ [/mm] gilt:
[mm] \bruch{|z||2w-z|}{|w|^2|z-w|^2}\le\bruch{R3|w|}{|w|^2\bruch{|w|^2}{4}} [/mm]

wär nett wenn mir das jemand erklären könnte

        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 So 21.11.2010
Autor: Marc

Hallo clee,

> versuche gerade einen beweis zu verstehen, in dem folgende
> ungleichung vorkommt über die ich schon seit ner ewigkeit
> grübel aber einfach nicht weiterkomm:
>  
> für [mm]|z|
>  
> [mm]\bruch{|z||2w-z|}{|w|^2|z-w|^2}\le\bruch{R3|w|}{|w|^2\bruch{|w|^2}{4}}[/mm]
>  wär nett wenn mir das jemand erklären könnte

Heißt das wirklich $R*3*|w|$ im Zähler des rechten Bruchs und nicht [mm] $R^3*|w|$? [/mm]

Viele Grüße,
Marc

Bezug
        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 So 21.11.2010
Autor: Marc

Hallo clee,

> versuche gerade einen beweis zu verstehen, in dem folgende
> ungleichung vorkommt über die ich schon seit ner ewigkeit
> grübel aber einfach nicht weiterkomm:
>  
> für [mm]|z|
>  
> [mm]\bruch{|z||2w-z|}{|w|^2|z-w|^2}\le\bruch{R3|w|}{|w|^2\bruch{|w|^2}{4}}[/mm]

Das steht dort so, dass man die einzelnen Abschätzungen noch erkennen kann:
[mm]\bruch{\red{|z|}|2w-z|}{|w|^2\blue{|z-w|^2}}\le\bruch{\red{R}3|w|}{|w|^2\blue{\bruch{|w|^2}{4}}}[/mm]
also:
(i) [mm] $\red{|z|}<\red{R}$ [/mm] (klar)
(ii) $|2w-z|<3|w|$
(iii) [mm] \blue{|z-w|^2}\ge \blue{\bruch{|w|^2}{4}}$ [/mm]

Die zweite Ungleichung ist auch klar: [mm] |2w-z|\le 2|w|+|z|\le [/mm] 2|w|+|w|=3|w|$, da [mm] $|z|\le [/mm] |w|$.

Die letzte Ungleichung ist mir gerade nicht klar, aber ich habe gerade keine Zeit mehr. Ich hoffe, es hilft dir trotzdem weiter.

Viele Grüße,
Marc


Bezug
                
Bezug
Ungleichung: iii)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 So 21.11.2010
Autor: moudi

Zur Punkt (iii) von Marc.

Zeichne die Punkte $A=z,B=w,C=w/2$ in der komplexen Zahlenebene ein. Weil [mm] $|w|/2\geq [/mm] R$ ist, und [mm] $|z|\leq [/mm] R$ ist der Winkel [mm] $\gamma=\spericalangle ACB\geq 90^\circ$, [/mm] (sofern die Punkte nicht auf einer Gerade liegen. Die Ungleichung behaupten dann einfach, dass die Seite $AB=|z-w|$ groesser ist, als die Seite $BC=|w|/2$, was klar ist, wenn [mm] $\gamma$ [/mm] groesser als [mm] $90^\circ$ [/mm] ist (in einem Dreieck liegt die groesste Seite dem groessten Winkel gegenueber.

Die Aussage gilt auch, wenn das Dreieck "entartet" ist, [mm] ($\gamma=180^\circ$). [/mm] Es gilt Gleichheit, wenn $B=C$ ist.

mfG Moudi

Bezug
                
Bezug
Ungleichung: iii)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 So 21.11.2010
Autor: Marc

Hallo,

ergänzend zu moudi eine direkte Abschätzung:

Es gilt doch [mm] $|z-w|\ge |w|-|z|\ge [/mm] 2R-R=R$, also [mm] $R\le [/mm] |z-w|$

Damit gilt auch [mm] $|z|\le R\le [/mm] |z-w|$ und letztlich

[mm] $|w|=|w-z+z|\le |w-z|+|z|\le [/mm] |w-z|+|z-w|=2|z-w|$,

also

[mm] $|w|\le [/mm] 2|z-w|$

[mm] $\Rightarrow$ $|w|^2\le 4|z-w|^2$ [/mm]

[mm] $\Rightarrow$ $\frac{|w|^2}4\le |z-w|^2$ [/mm]

Viele Grüße,
Marc

Bezug
                        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 So 21.11.2010
Autor: clee

dankeschön, habs verstanden :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]