matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichung Lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Ungleichung Lösen
Ungleichung Lösen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:37 Do 19.08.2010
Autor: deex

Hallo,

mir ist heute folgende Frage aufgekommen.

Man nehme die Funktion [m]y = f(x) = x^x[/m]
Nun wollte ich wissen für welche [m] x , f(x)>0 [/m] ist
Die meiste einschlägige CAS-Software kommt mit dieser frage allerdings nicht klar und geben mir als Lösung [m] x>0[/m] aus
Ich habe mir so geholfen das ich mir die Funktion parametrisch geplottet habe. Also auf der x-Achse den Realteil von [m] x(t)=Real(t^t) [/m] und auf der y-Achse den Imaginärteil von [m] y(t)=Imag(t^t) [/m]. Es entsteht dabei ja eine Spirale auf der ich die Lösungen ja als Schnittpunkt mit der x-Achse ablesen kann. So zBsp. bei t=-1.

Jetzt wollte ich aber fragen ob mir jemand auch eine allgemeine Lösung formulieren könnte. Mir fällt dazu nämlich nicht viel mehr ein

        
Bezug
Ungleichung Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:13 Do 19.08.2010
Autor: felixf

Moin,

> mir ist heute folgende Frage aufgekommen.
>  
> Man nehme die Funktion [m]y = f(x) = x^x[/m]
>  Nun wollte ich
> wissen für welche [m]x , f(x)>0[/m] ist
>  Die meiste einschlägige CAS-Software kommt mit dieser
> frage allerdings nicht klar und geben mir als Lösung [m]x>0[/m]
> aus

nun, hast du dem CAS auch gesagt, dass du an komplexen Loesungen interessiert bist? Die naechste Frage ist natuerlich, ob die meisten CASe das ueberhaupt koennen. Ich tippe spontan auf nein.

>  Ich habe mir so geholfen das ich mir die Funktion
> parametrisch geplottet habe. Also auf der x-Achse den
> Realteil von [m]x(t)=Real(t^t)[/m] und auf der y-Achse den
> Imaginärteil von [m]y(t)=Imag(t^t) [/m]. Es entsteht dabei ja
> eine Spirale auf der ich die Lösungen ja als Schnittpunkt
> mit der x-Achse ablesen kann. So zBsp. bei t=-1.
>  
> Jetzt wollte ich aber fragen ob mir jemand auch eine
> allgemeine Lösung formulieren könnte. Mir fällt dazu
> nämlich nicht viel mehr ein

ich kann's mal versuchen.

Es ist ja [mm] $x^x [/mm] = [mm] \exp(x \log [/mm] x)$.

Erstmal: wo ist diese Funktion ueberhaupt definiert? Dazu muss [mm] $\log [/mm] x$ definiert sein -- das geht im Prinzip ueberall, ausser in 0, allerdings gibt es keine Wahl, so dass [mm] $\log$ [/mm] auf ganz [mm] $\IC \setminus \{ 0 \}$ [/mm] stetig ist. Insofern macht es Sinn, diese Funktion erstmal nur auf den positiven reellen Zahlen zu definieren, oder auf irgendeiner Teilmenge von [mm] $\IC$, [/mm] die eine Kurve von 0 bis [mm] $\infty$ [/mm] nicht enthaelt.

Wenn man das Problem anschaut, muss man also den Zweig des Logarithmus mit beruecksichtigen (im Folgenden dient dafuer $k$).

Schreiben wir $x = r [mm] \exp(i [/mm] t) = r [mm] \cos [/mm] t + r i [mm] \sin [/mm] t$ mit $r > 0$ und $t [mm] \in [/mm] [0, 2 [mm] \pi)$. [/mm] Dann ist [mm] $\log [/mm] x = [mm] \log [/mm] r + i t + 2 [mm] \pi [/mm] i k$ mit $k [mm] \in \IZ$. [/mm] Dann ist also $x [mm] \log [/mm] x = (r [mm] \cos [/mm] t + r i [mm] \sin [/mm] t) [mm] (\log [/mm] r + i (t + 2 [mm] \pi [/mm] k) i) = r [mm] \cos [/mm] t [mm] \log [/mm] r - r [mm] \sin [/mm] t (t + 2 [mm] \pi [/mm] k) + i (r [mm] \cos [/mm] t (t + 2 [mm] \pi [/mm] k) + r [mm] \sin [/mm] t [mm] \log [/mm] r)$, und [mm] $\exp(x \log [/mm] x) = [mm] \exp(r \cos [/mm] t [mm] \log [/mm] r - r [mm] \sin [/mm] t (t + 2 [mm] \pi [/mm] k)) [mm] \cdot \exp(i [/mm] (r [mm] \cos [/mm] t (t + 2 [mm] \pi [/mm] k) + r [mm] \sin [/mm] t [mm] \log [/mm] r))$.

Damit dies eine positive reelle Zahl ist, muss $(r [mm] \cos [/mm] t (t + 2 [mm] \pi [/mm] k) + r [mm] \sin [/mm] t [mm] \log [/mm] r) = 2 [mm] \pi \ell$ [/mm] sein fuer ein passendes [mm] $\ell \in \IZ$. [/mm]

Diese Gleichung ist aequivalent zu $r [mm] (\cos [/mm] t [mm] \cdot [/mm] (t + 2 [mm] \pi [/mm] k) + [mm] \sin [/mm] t [mm] \cdot \log [/mm] r) = 2 [mm] \pi \ell$ [/mm] -- und alles andere als einfach zu loesen.


Schauen wir uns zuerst spezielle Werte fuer $t$ an. Etwa $t = n [mm] \pi$ [/mm] mit $n [mm] \in \{ 0, 1 \}$. [/mm] In diesen Faellen ist [mm] $\sin [/mm] t = 0$ und [mm] $\cos [/mm] t = [mm] (-1)^n$, [/mm] womit die Gleichung zu $r [mm] (-1)^n [/mm] (n [mm] \pi [/mm] + 2 [mm] \pi [/mm] k) = 2 [mm] \pi \ell$ [/mm] wird. Waehlt man den Hauptzweig des Logarithmus, also $k = 0$, so muss [mm] $\frac{n}{2} (-1)^n [/mm] r [mm] \in \IZ$ [/mm] sein -- was fuer $n = 0$ immer gilt, und fuer $n = 1$ fuer $r [mm] \in [/mm] 2 [mm] \IZ$. [/mm]

Wir haben also neben den Loesungen $x > 0$ auch die Loesungen $x = (2 k) [mm] e^{-i t} [/mm] = -2 k$ fuer $k [mm] \in \IN_{>0}$. [/mm]


Was ist nun mit $t = [mm] (\tfrac{1}{2} [/mm] + n) [mm] \pi$ [/mm] mit $n [mm] \in \{ 0, 1 \}$? [/mm] Dann ist [mm] $\sin [/mm] t = [mm] (-1)^n$ [/mm] und [mm] $\cos [/mm] t = 0$, womit wir die Gleichung [mm] $(-1)^n [/mm] r [mm] \log [/mm] r = 2 [mm] \pi \ell$ [/mm] bekommen. Hier haben wir schon gleich das Problem, dass man fuer jedes $n$ viele Loesungen bekommt, aber diese nicht angeben kann. (Das ist aequivalent dazu, die Gleichung [mm] $x^x [/mm] = a$ zu loesen mit $x [mm] \in \IR_{>0}$.) [/mm]


Allgemeines $t$ macht das ganze nicht besser -- eher viel komplizierter. Ich denke nicht, dass man hier exakte Loesungen angeben kann.

LG Felix


Bezug
                
Bezug
Ungleichung Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Do 19.08.2010
Autor: deex

Hallo Felix,
vielen Dank für die Arbeit die du dir gemacht hast. Ich fand deine Erklärung auch bis auf eine Zeile super nachzuvollziehen.

> Wir haben also neben den Loesungen [mm]x > 0[/mm] auch die Loesungen
> [mm]x = (2 k) e^{-i t} = -2 k[/mm] fuer [mm]k \in \IN_{>0}[/mm].

Hier bin ich nicht ganz mitgekommen wie du darauf gekommen bist. Der Rest ist super.

Bezug
                        
Bezug
Ungleichung Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Do 19.08.2010
Autor: felixf

Moin!

> Hallo Felix,
>  vielen Dank für die Arbeit die du dir gemacht hast. Ich
> fand deine Erklärung auch bis auf eine Zeile super
> nachzuvollziehen.
>  
> > Wir haben also neben den Loesungen [mm]x > 0[/mm] auch die Loesungen
> > [mm]x = (2 k) e^{-i t} = -2 k[/mm] fuer [mm]k \in \IN_{>0}[/mm].
>  
> Hier bin ich nicht ganz mitgekommen wie du darauf gekommen
> bist. Der Rest ist super.

Fuer $t = 0$ ($n = 0$) und $r > 0$ hat man $x = r [mm] e^{i t} [/mm] = r [mm] e^0 [/mm] = r$. Also bekommt man alle Zahlen $x > 0$.

Fuer $t = [mm] \pi$ [/mm] ($n = 1$) und $r [mm] \in [/mm] 2 [mm] \IZ$ [/mm] (und gleichzeitig $r > 0$) bekommst du $x = r [mm] e^{\pi i} [/mm] = -r = -2 k$ mit $k [mm] \in \IN_{>0}$. [/mm]

Ist es jetzt klarer?

LG Felix


Bezug
                                
Bezug
Ungleichung Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:16 Do 19.08.2010
Autor: deex

ja vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]