matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionUngleichung mit Fakultät
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Ungleichung mit Fakultät
Ungleichung mit Fakultät < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung mit Fakultät: Idee
Status: (Frage) beantwortet Status 
Datum: 17:38 So 28.10.2012
Autor: Lale22

Aufgabe
Für welche n elemet No gilt die Folgende Ungleichung??
n! >= [mm] 2^n [/mm]

Ich hab angefangen mit dem IA
n=0
Linke Seite 0! = 1
Rechte Seite [mm] 2^0 [/mm] =1
n=1
LS 1! = 1
RS [mm] 2^1 [/mm] = 2
=>  1! >= [mm] 2^1 [/mm] stimmt

Da es für n=0 gilt und auch n=1 gilt soll es für n+1 gelten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

zZ (n+1)! >= [mm] 2^n+1 [/mm]

Ich weiß nicht wie ich weiter machen soll. Kann mir da jmd. helfen??

        
Bezug
Ungleichung mit Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 28.10.2012
Autor: abakus


> Für welche n elemet No gilt die Folgende Ungleichung??
>   n! >= [mm]2^n[/mm]
>  Ich hab angefangen mit dem IA
>  n=0
>  Linke Seite 0! = 1
>  Rechte Seite [mm]2^0[/mm] =1
>  n=1
>  LS 1! = 1
>  RS [mm]2^1[/mm] = 2
>  =>  1! >= [mm]2^1[/mm] stimmt

Hallo,
n! hat die Werte
1, 1, 2, 6, 24, 120,...
und [mm] $2^n$ [/mm] hat die Werte
1, 2, 4, 8, 16, 32,...
Die Werte sind gleich bei n=0 (Sonderfall).
Dann ist eine Weile [mm] $2^n$ [/mm] der größere Wert, erst ab n=4 ist dann wieder n! der größere Wert.
Ein Induktionsbeweis kann also erst mit dem Induktionsanfang n=4 beginnen.
Gruß Abakus

>  
> Da es für n=0 gilt und auch n=1 gilt soll es für n+1
> gelten.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> zZ (n+1)! >= [mm]2^n+1[/mm]

Nein, z.z. ist [mm] (n+1)!$\ge 2^{n+1}$. [/mm]

>  
> Ich weiß nicht wie ich weiter machen soll. Kann mir da
> jmd. helfen??


Bezug
                
Bezug
Ungleichung mit Fakultät: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 So 28.10.2012
Autor: Lale22

Aufgabe
Für welche n element [mm] \IN0 [/mm] gilt die folgende Ungleichung??
n! [mm] \ge 2^{n} [/mm]

Danke erstmals für die schnelle Antwort, aber ich frage mich halt immernoch wie ich den Induktionsschritt bei einer Ungleichung machen kann. Dann hab ich doch im IS stehen:
n!(n+1) [mm] \ge 2^{n+1} [/mm] oder??
Wenn es richtig wie gehe ich vor und was ist mein Ziel??>


Bezug
                        
Bezug
Ungleichung mit Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 So 28.10.2012
Autor: Teufel

Hi!

Dein Ziel ist immer noch [mm] $(n+1)!\ge2^{n+1}$ [/mm] zu zeigen. Nun hast du $(n+1)!=n!*(n+1)$, wie du schon richtig geschrieben hast. Wende nun die Induktionsvorausstzung an [mm] ($n!\ge 2^n$). [/mm] Dann müsstest du noch zeigen, dass [mm] $n+1\ge [/mm] 2$ gilt, was aber klar ist. Setz das alles mal zusammen.

Bezug
                                
Bezug
Ungleichung mit Fakultät: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 So 28.10.2012
Autor: Lale22

Also lautet der IS

(n+1)! = [mm] n!\*(n+1) [/mm] > [mm] (n+1)\*2^{n}>2 \*2^{n} [/mm]

Ist das hiermit schon gezeigt??

Bezug
                                        
Bezug
Ungleichung mit Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 So 28.10.2012
Autor: schachuzipus

Hallo Lale22,


> Also lautet der IS
>  
> (n+1)! = [mm]n!\*(n+1)[/mm] > [mm](n+1)\*2^{n}>2 \*2^{n}[/mm]

[mm] $\ge$ [/mm] laut Aufgabe und die Begrüngungen fehlen. Die Umformungen stimmen.

>  
> Ist das hiermit schon gezeigt??

Jein, der Korrektor wird sicher Punkte abziehen wegen fehlender Begründungen.

Zumindest an der Stelle, an der die IV ins Spiel kommt, solltest du das deutlich dranschreiben ;-)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]