matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesUngleichung mit arccos
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Ungleichung mit arccos
Ungleichung mit arccos < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung mit arccos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Do 15.04.2010
Autor: petzimuh

Hallo!

Ich stehe wiedermal vor einem Rätsel:
Ich soll versuchen zu zeigen, dass

[mm] arccos(3-\bruch{2}{cos^2(s/2)}) [/mm] - [mm] 3*arccos(3-\bruch{2}{cos^2(s/6)}) [/mm] > 0 bzw. maximal =0 für 0 < s < [mm] \pi/2 [/mm] gilt.

Es ist wiedermal nur eine Vermutung. Ich bräuchte den Beweis für meine Diplomarbeit. Ich habe mir in Mathematica den Graphen zeichnen lassen...und in der Nähe von Null ist es ziemlich knapp. Es sieht zwar nicht aus, als wäre es wo negativ, aber jetzt soll ich das eben zeigen. (wenn möglich)
Nur leider steh ich mit der arccos-Funktion nun total an.
Habt ihr eine Idee?

Vielen Dank!
und Liebe Grüße,

Petra

        
Bezug
Ungleichung mit arccos: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Fr 16.04.2010
Autor: rainerS

Hallo Petra!
  

> Ich stehe wiedermal vor einem Rätsel:
>  Ich soll versuchen zu zeigen, dass
>
> [mm]\arccos(3-\bruch{2}{\cos^2(s/2)}) - 3*\arccos(3-\bruch{2}{\cos^2(s/6)}) > 0[/mm] bzw. maximal =0 für  [mm] 0 < s < \pi/2[/mm] gilt.
>  
> Es ist wiedermal nur eine Vermutung. Ich bräuchte den
> Beweis für meine Diplomarbeit. Ich habe mir in Mathematica
> den Graphen zeichnen lassen...und in der Nähe von Null ist
> es ziemlich knapp. Es sieht zwar nicht aus, als wäre es wo
> negativ, aber jetzt soll ich das eben zeigen. (wenn
> möglich)
>  Nur leider steh ich mit der arccos-Funktion nun total an.
>  Habt ihr eine Idee?

Zwei Dinge springen mir sofort ins Auge:

1. ist der Ausdruck für $s=0$ gleich 0, weil er dann [mm] $-2\arccos [/mm] 1 = 0$ ist.
2. würde ich mittels

[mm] \cos^2 x = \bruch{1}{2} (1+\cos x) [/mm]

die Quadrate der Cosinusfunktion ersetzen.

Dann hast du

[mm] \arccos(3-\bruch{4}{1+\cos s}) - 3 \arccos(3-\bruch{4}{1+\cos(s/3)}) [/mm],

was etwas einfacher zu handhaben ist.

Du willst zeigen, dass dies im angegebenen Intervall [mm] 0 < s < \pi/2[/mm] nicht negativ ist, oder dass

[mm] \arccos(3-\bruch{4}{1+\cos s}) \ge 3 \arccos(3-\bruch{4}{1+\cos(s/3)}) [/mm]

ist.

Überlege dir erst einmal, dass für [mm] 0 < s < \pi/2[/mm] sowohl die rechte wie auch die linke Seite streng monotone Funktionen von s sind: zum Beispiel ist [mm] $\cos [/mm] s$ eine streng monoton fallende Funktion und damit auch

[mm] 3-\bruch{4}{1+\cos s} [/mm].

Weiter ist

[mm] 1 \ge 3-\bruch{4}{1+\cos s} \ge -1 [/mm],

und da der Arcuscosinus im Interval $[-1,1]$ streng monoton fallend ist, ist

[mm] \arccos(3-\bruch{4}{1+\cos s}) [/mm]

streng monoton steigend.

Das gleiche gilt für die rechte Seite, und daher darfst du auf beiden Seiten den Cosinus anwenden und bekommst folgende nachzuweisende Ungleichung:

  [mm] 3-\bruch{4}{1+\cos s} \le \cos\left( 3 \arccos(3-\bruch{4}{1+\cos(s/3)}) \right) [/mm]

Hier kannst du die rechte Seite mit dem Additionstheorem für dreifache Winkel vereinfachen:

[mm] \cos (3x) = \cos^3 x - 3 \cos x \sin^2 x = 4 \cos^3 x - 3 \cos x [/mm] ,

und daher

[mm] \cos\left( 3 \arccos(3-\bruch{4}{1+\cos(s/3)})\right) = 4 (3-\bruch{4}{1+\cos(s/3)})^3 - 3 (3-\bruch{4}{1+\cos(s/3)}) [/mm] .

Damit müsstest du weiterkommen.

   Viele Grüße
     Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]