matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUngleichung von Normen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Ungleichung von Normen
Ungleichung von Normen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung von Normen: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:53 Di 19.11.2013
Autor: Simone_333

Aufgabe
Für die p-Norm [mm] ||.||_{p} [/mm] im [mm] \IR^{n} [/mm] mit p [mm] \in [1,\infty) [/mm] zeige man:

[mm] ||x||_{p} \le n^{\bruch{q-1}{qp}} ||x||_{pq} [/mm]      
[mm] \forall [/mm] x [mm] \in \IR^{n} [/mm]

Hallo,

Ich habe diese Aufgabe zu lösen und komme einfach auf keine passende Idee.

Ich würde jetzt einfach mal so starten:

[mm] ||x||_p \le n*||x||_p [/mm]

So und nun hab ich mal ausprobiert was passiert, wenn ich

[mm] (n*||x||)^{p} [/mm] oder [mm] (n*||x||)^{q} [/mm]

aber das bringt mir irgendwie nichts.


Es wäre wirklich sehr nett, wenn mir jemand einen Tipp geben könnte wie ich weiter machen soll.

Vielen lieben Dank

        
Bezug
Ungleichung von Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Di 19.11.2013
Autor: fred97


> Für die p-Norm [mm]||.||_{p}[/mm] im [mm]\IR^{n}[/mm] mit p [mm]\in [1,\infty)[/mm]
> zeige man:
>  
> [mm]||x||_{p} \le n^{\bruch{q-1}{qp}} ||x||_{pq}[/mm]    

  

> [mm]\forall[/mm] x [mm]\in \IR^{n}[/mm]

Klär mich auf: was ist q ? Steht rechts wirklich [mm] ||x||_{pq} [/mm] ?

FRED

>  Hallo,
>  
> Ich habe diese Aufgabe zu lösen und komme einfach auf
> keine passende Idee.
>
> Ich würde jetzt einfach mal so starten:
>  
> [mm]||x||_p \le n*||x||_p[/mm]
>  
> So und nun hab ich mal ausprobiert was passiert, wenn ich
>
> [mm](n*||x||)^{p}[/mm] oder [mm](n*||x||)^{q}[/mm]
>
> aber das bringt mir irgendwie nichts.
>
>
> Es wäre wirklich sehr nett, wenn mir jemand einen Tipp
> geben könnte wie ich weiter machen soll.
>
> Vielen lieben Dank


Bezug
                
Bezug
Ungleichung von Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Di 19.11.2013
Autor: Simone_333


> > Für die p-Norm [mm]||.||_{p}[/mm] im [mm]\IR^{n}[/mm] mit p [mm]\in [1,\infty)[/mm]
> > zeige man:
>  >  
> > [mm]||x||_{p} \le n^{\bruch{q-1}{qp}} ||x||_{pq}[/mm]    
>
> > [mm]\forall[/mm] x [mm]\in \IR^{n}[/mm]
>  
> Klär mich auf: was ist q ? Steht rechts wirklich
> [mm]||x||_{pq}[/mm] ?
>  
> FRED

Hallo FRED, da hab ich´s vergessen aufzuschreiben
Es soll noch heißen: [mm] \forall [/mm] q>1


Bezug
                        
Bezug
Ungleichung von Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Di 19.11.2013
Autor: Simone_333


> > > Für die p-Norm [mm]||.||_{p}[/mm] im [mm]\IR^{n}[/mm] mit p [mm]\in [1,\infty)[/mm]
> > > zeige man:
>  >  >  
> > > [mm]||x||_{p} \le n^{\bruch{q-1}{qp}} ||x||_{pq}[/mm]    
> >
> > > [mm]\forall[/mm] x [mm]\in \IR^{n}[/mm]
>  >  
> > Klär mich auf: was ist q ? Steht rechts wirklich
> > [mm]||x||_{pq}[/mm] ?
>  >  
> > FRED

Hallo FRED, da hab ich´s vergessen aufzuschreiben
Es soll noch heißen: [mm]\forall[/mm] q>1 und ja die rechte Seite stimmt so.


Bezug
                        
Bezug
Ungleichung von Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Di 19.11.2013
Autor: fred97

Schau mal hier

http://de.wikipedia.org/wiki/P-Norm

unter "Äquivalenz"

FRED



Bezug
                                
Bezug
Ungleichung von Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Di 19.11.2013
Autor: Simone_333

Danke das ist schon mal ein guter Tipp.

Da werd ich mich gleich mal ran setzten.

Vielen lieben Dank Fred :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]