matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichung wahr?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Ungleichung wahr?
Ungleichung wahr? < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung wahr?: Ich weiß nicht!
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:20 Mo 11.11.2013
Autor: sick_of_math

Aufgabe
Hallo, es ist [mm] $\lvert x\rvert\leq [/mm] M $ für ein M$>0$.

Gilt dann:

[mm] $\frac{1}{2}(2+x^2-M\sqrt{M^2+4})\geq\frac{1}{2}(2+M^2-M\sqrt{M^2+4})>0$? [/mm]

Ich weiß nicht, wie ich das zeigen soll ;(

        
Bezug
Ungleichung wahr?: alle Informationen?
Status: (Antwort) fertig Status 
Datum: 18:31 Mo 11.11.2013
Autor: Loddar

Hallo sick_of_math!


Gibt es hier noch irgendwelche Zusatzinformationen zu [mm]M_[/mm] oder [mm]x_[/mm] ?

Wenn Du Deine Ungleichheitskette in zwei Ungleichungen auflöst, erhält man durch Umformungen:

(1) [mm] $\frac{1}{2}*\left(2+x^2-M*\sqrt{M^2+4} \ \right) [/mm] \ [mm] \geq [/mm] \ [mm] \frac{1}{2}*\left(2+M^2-M*\sqrt{M^2+4} \ \right) [/mm] \ \ \ [mm] \gdw [/mm] \ \ \ [mm] x^2 [/mm] \ [mm] \geq [/mm] \ M$

(2) [mm] $\frac{1}{2}*\left(2+M^2-M*\sqrt{M^2+4} \ \right) [/mm] \ > \ 0 \ \ \ [mm] \Rightarrow [/mm] \ \ \ 4 \ > \ 0$


Gruß
Loddar

Bezug
                
Bezug
Ungleichung wahr?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:35 Mo 11.11.2013
Autor: sick_of_math

Ich kann auch mal anders fragen:

Ich muss zeigen, dass

[mm] $z_1=\frac{1}{2}(2+x^2+w+\sqrt{w^2-2wx^2+x^4+4x^2})$ [/mm]

und

[mm] $z_2=\frac{1}{2}((2+x^2+w [/mm] - [mm] \sqrt{w^2-2wx^2+x^4+4x^2})$ [/mm]

positiv sind, wobei $w$ nicht negativ ist.



Und die x sollen aus einer beschränkten Menge [mm] $X\subset\mathbb{R}^2$ [/mm] kommen, deswegen habe ich das mit dem M aufgeschrieben als Schranke, weil es doch dann ein $M>0$ gibt, sodass für alle [mm] $x\in [/mm] X$ gilt: [mm] $\vert x\rvert\leq [/mm] M$.


Meine Idee zu [mm] z_2 [/mm] war, dies nach unten abzuschätzen:

Es ist doch

[mm] $\sqrt{w^2-2wx^2+x^4+4x^2}\leq\sqrt{w^2+x^4+4x^2}\leq\sqrt{w^2}+\sqrt{x^4+4x^2}= w+\vert x\rvert\sqrt{x^2+4}\leq w+M\sqrt{M^2+4}$ [/mm]

und deswegen

[mm] $z_2\geq\frac{1}{2}(2+x^2-M\sqrt{M^2+4})$ [/mm]

Aber nun weiß ich nicht wie ich das weiter nach unten abschätzen kann: Da muss ja irgendeine untere Grenze bei rauskommen, die auf jeden Fall positiv ist.

Bezug
                        
Bezug
Ungleichung wahr?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 13.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]