matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionUngleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Ungleichungen
Ungleichungen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:13 Mo 23.04.2007
Autor: Tanja1985

Aufgabe
Es seien a,b >0 und 0<p<1. Man zeige [mm] (a+b)^{p} \le a^{p} [/mm] + [mm] b^{p} [/mm]

Hallo ich soll folgende Aufgabe lösen, leider fehlt mir eine Idee, wie ich diese Aufgabe angehen könnte.
Kann mir jemand weiterhelfen?

Lg Tanja

        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Mo 23.04.2007
Autor: DirkG

Hallo Tanja,

zunächst mal kannst du die Ungleichung durch [mm] $a^p$ [/mm] dividieren, da steht dann
[mm] $$(1+x)^p \leq [/mm] 1 + [mm] x^p$$ [/mm]
mit [mm] $x=\frac{b}{a}$. [/mm] Wenn du also diese Ungleichung für alle positiven $x$ beweist, bist du fertig. Eine Möglichkeit dazu ist z.B. die Betrachtung der Funktion
$$f(x) = [mm] (1+x)^p [/mm] - [mm] x^p-1, \qquad x\geq [/mm] 0 [mm] \quad [/mm] .$$
Für die gilt $f(0)=0$ sowie $f'(x) = [mm] p\cdot \left[ (1+x)^{p-1} - x^{p-1} \right]$ [/mm] ... mehr verrate ich erstmal nicht.


Gruß,
Dirk

Bezug
                
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Mo 23.04.2007
Autor: Tanja1985

Hallo ich versteh den ersten schritt nicht,wie kann ich denn in der klammer durch [mm] a^{p} [/mm] teilen?


lg tanja

Bezug
                        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Mo 23.04.2007
Autor: leduart

Hallo
Potenzgesetze:
[mm] u^p*v^p0=(uv)^p [/mm]

[mm] (1/a)^p*(a+b)^p=(1/a(a+b))^p=(1+b/a)^p [/mm]
alles klar? das musst du im Schlaf und ohne den Umweg können!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]