matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Ungleichungen
Ungleichungen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Sa 12.05.2007
Autor: UE_86

Aufgabe
Geben Sie die Lösungsmenge folgender Ungleichung an
a) [mm] \bruch{x+8}{x+3} [/mm] < x

Hallo,

ich wiederhole gerade die letzten Semester und merke, dass ich irgendwie die Ungleichungen nicht mehr so ganz beherrsche. Ich komme hier einfach nicht auf die vorgegebene Lösungsmenge von L = [mm] ]-4,-3[\cup]2,\infty[ [/mm]
Hier mein Ansatz:
x [mm] \not= [/mm] -3
1. Fall:
x < -3 also Nenner kleiner 0.
[mm] \Rightarrow [/mm] x+3 < x + 8
[mm] \Rightarrow [/mm] x < x + 5
[mm] \Rightarrow [/mm] 0 < 5

2. Fall
x > -3 also Nenner größer 0.
[mm] \Rightarrow [/mm] x+3 > x + 8
[mm] \Rightarrow [/mm] x > x + 5 ... das wäre ein Widerspruch

Also irgendwie scheiter ich gerade an diesen recht einfachen Aufgaben...was mache ich hier denn falsch?

Danke und noch n schönes WE
UE

        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Sa 12.05.2007
Autor: schachuzipus

Hallo UE,

deine Anfangsüberlegungen sind ok,

Die Fallunterscheidung ist auch richtig, nur die Rechnungen kann ich nicht nachvollziehen ;-)

Mal zum 1.Fall:

$x<-3$

[mm] $\Rightarrow [/mm] x+3<0$

Dann multipliziere die Ungleichung mit $x+3$ durch, wobei sich das Ungleichheitszeichen umdreht !!

[mm] $\Rightarrow x+8>x(x+3)=x^2+3x\Rightarrow x^2+2x-8<0\Rightarrow [/mm] (x-2)(x+4)=<0$

Ein Produkt ist kleiner Null, wenn einer der Faktoren kleiner, der andere größer Null ist

ALso: [mm] $\Rightarrow \left((x-2)>0\wedge (x+4)<0\right)\vee\left((x-2)<0\wedge (x+4)>0\right)$ [/mm]

Das untersuche mal weiter und du wirst feststellen, dass die erste Bedingung einen Widerspruch liefert und die 2te Bedingung - zusammen mit der Vor des. 1.Falles: x<-3 - genau das erste (offene) Intervall der Musterlösung liefert.

Den 2ten Fall überlegst du dir ganz ähnlich (Produkt größer Null, wenn.... usw)


Hoffe, das bringt dich weiter

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]