matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Ungleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Ungleichungen
Ungleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Mi 22.10.2008
Autor: itse

Aufgabe
Geben Sie zu folgenden Ungleichungen die Lösungsmenge L an. Was ist der jeweilige größtmögliche Definitionsbereich D?

a, [mm] \bruch{1}{(x+1)²} \le \bruch{1}{(x-2)²} [/mm] b, [mm] \bruch{1}{x+1} [/mm] < [mm] \bruch{1}{x-1} [/mm]  c, [mm] \bruch{2x}{|x+3|} \le [/mm] 5

Hallo Zusammen,

bei der Aufgabe a, brauche ich doch keine Fallunterscheidung, da durch das Quadrat nichts Negatives herauskommen kann? Also kann ich es so umformen:

[mm] \bruch{1}{(x+1)²} \le \bruch{1}{(x-2)²}, [/mm] D=IR \ {-1,2}

(x-2)² [mm] \le [/mm] (x+1)²

x²-4x+2 [mm] \le [/mm] x²+2x+1

-6x [mm] \le [/mm] -1

x [mm] \ge \bruch{1}{6}, L=]\bruch{1}{6}, \infty[. [/mm] Laut Lösung soll jedoch  L=]2, [mm] \infty[. [/mm] Wo liegt der Fehler?



Aufgabe b,

[mm] \bruch{1}{x+1} [/mm] < [mm] \bruch{1}{x-1}, [/mm] D=IR \ {-1,1}

1.Fall x < -1:

x-1 < x+1
0 < 2 (wahr), [mm] L_1=]- \infty, [/mm] -1[

2. Fall -1<x<1:

x-1 > x+1
0 > 2 (falsch); [mm] L_2={} [/mm]

3.Fall x > 1:

x-1 < x+1
0 < 2 (wahr) [mm] L_3=]1, \infty[ [/mm]

L = [mm] L_1 \cup L_2 \cup L_3 [/mm] = ]- [mm] \infty, [/mm] -1[ [mm] \cup [/mm] ]1, [mm] \infty[, [/mm] Hierbei bin ich mir nicht ganz sicher, da bei Auflösung der Ungleichung jeweils das x herausfällt, es ergeben sich aber richtige Aussagen, stimmt dies so?



Aufgabe c,

[mm] \bruch{2x}{|x+3|} \le [/mm] 5, D=IR \ {-3}

Hierbei kann ich doch den Betrag unter dem Bruchstrich, als erstes auf die rechte Seite holen, damit die Fallunterscheidung für die Ungleichung entfällt, oder?

2x [mm] \le [/mm] 5 [mm] \cdot{} [/mm] |x+3|

Nun eine Fallunterscheidung für die Betragsstriche:

1.Fall x+3 > 0 für x > -3

2x [mm] \le [/mm] 5 [mm] \cdot{} [/mm] (x+3)
-3x [mm] \le [/mm] 15
x [mm] \ge [/mm] -5, [mm] L_1= [/mm] ]-3 , [mm] \infty[ [/mm]


2.Fall x+3 < 0 für x < -3

2x [mm] \le [/mm] 5 [mm] \cdot{} [/mm] -(x+3)
7x [mm] \le [/mm] -15
x [mm] \le -\bruch{15}{7}, L_2=]- \infty, [/mm] -3[

L= ]- [mm] \infty, [/mm] -3[ [mm] \cup [/mm] ]-3 , [mm] \infty[ [/mm] = D

Stimmt diese Lösung?

Gruß,
itse

        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Mi 22.10.2008
Autor: fred97


> Geben Sie zu folgenden Ungleichungen die Lösungsmenge L an.
> Was ist der jeweilige größtmögliche Definitionsbereich D?
>  
> a, [mm]\bruch{1}{(x+1)²} \le \bruch{1}{(x-2)²}[/mm] b,
> [mm]\bruch{1}{x+1}[/mm] < [mm]\bruch{1}{x-1}[/mm]  c, [mm]\bruch{2x}{|x+3|} \le[/mm]
> 5
>  Hallo Zusammen,
>  
> bei der Aufgabe a, brauche ich doch keine
> Fallunterscheidung, da durch das Quadrat nichts Negatives
> herauskommen kann? Also kann ich es so umformen:
>  
> [mm]\bruch{1}{(x+1)²} \le \bruch{1}{(x-2)²},[/mm] D=IR \ {-1,2}
>  
> (x-2)² [mm]\le[/mm] (x+1)²
>  
> x²-4x+2 [mm]\le[/mm] x²+2x+1

Schau Dir die binomischen Formeln noch mal an!


(x-2)² = [mm] x^2-4x+4 [/mm]

>  
> -6x [mm]\le[/mm] -1
>  
> x [mm]\ge \bruch{1}{6}, L=]\bruch{1}{6}, \infty[.[/mm] Laut Lösung
> soll jedoch  L=]2, [mm]\infty[.[/mm] Wo liegt der Fehler?

Ich bekomme [mm] x\ge [/mm] 1/2

FRED

>  
>
>
> Aufgabe b,
>  
> [mm]\bruch{1}{x+1}[/mm] < [mm]\bruch{1}{x-1},[/mm] D=IR \ {-1,1}
>  
> 1.Fall x < -1:
>  
> x-1 < x+1
>  0 < 2 (wahr), [mm]L_1=]- \infty,[/mm] -1[
>  
> 2. Fall -1<x<1:
>  
> x-1 > x+1
>  0 > 2 (falsch); [mm]L_2={}[/mm]

>  
> 3.Fall x > 1:
>  
> x-1 < x+1
>  0 < 2 (wahr) [mm]L_3=]1, \infty[[/mm]
>  
> L = [mm]L_1 \cup L_2 \cup L_3[/mm] = ]- [mm]\infty,[/mm] -1[ [mm]\cup[/mm] ]1,
> [mm]\infty[,[/mm] Hierbei bin ich mir nicht ganz sicher, da bei
> Auflösung der Ungleichung jeweils das x herausfällt, es
> ergeben sich aber richtige Aussagen, stimmt dies so?
>  
>
>
> Aufgabe c,
>  
> [mm]\bruch{2x}{|x+3|} \le[/mm] 5, D=IR \ {-3}
>  
> Hierbei kann ich doch den Betrag unter dem Bruchstrich, als
> erstes auf die rechte Seite holen, damit die
> Fallunterscheidung für die Ungleichung entfällt, oder?
>  
> 2x [mm]\le[/mm] 5 [mm]\cdot{}[/mm] |x+3|
>  
> Nun eine Fallunterscheidung für die Betragsstriche:
>  
> 1.Fall x+3 > 0 für x > -3
>  
> 2x [mm]\le[/mm] 5 [mm]\cdot{}[/mm] (x+3)
>  -3x [mm]\le[/mm] 15
>  x [mm]\ge[/mm] -5, [mm]L_1=[/mm] ]-3 , [mm]\infty[[/mm]
>  
>
> 2.Fall x+3 < 0 für x < -3
>  
> 2x [mm]\le[/mm] 5 [mm]\cdot{}[/mm] -(x+3)
>  7x [mm]\le[/mm] -15
>  x [mm]\le -\bruch{15}{7}, L_2=]- \infty,[/mm] -3[
>  
> L= ]- [mm]\infty,[/mm] -3[ [mm]\cup[/mm] ]-3 , [mm]\infty[[/mm] = D
>  
> Stimmt diese Lösung?
>  
> Gruß,
>  itse


Bezug
                
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Mi 22.10.2008
Autor: itse

Hallo,

ich war mal wieder blind, natürlich muss es so lauten:

(x-2)² = x²-4x+4 und ich erhalte auch x [mm] \ge [/mm] 0,5

Jedoch steht in der Lösung L=]2, [mm] \infty[, [/mm] was ja bedeutet, alle Zahlen größer als 2 und nicht größer oder gleich 2. Stimmt dann die Lösung im Buch nicht?

Wie sieht es mit meinen anderen beiden Lösungen für Aufgabe b und c aus, stimmen diese?

Danke,
itse

Bezug
                        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mi 22.10.2008
Autor: fred97


> Hallo,
>  
> ich war mal wieder blind, natürlich muss es so lauten:
>  
> (x-2)² = x²-4x+4 und ich erhalte auch x [mm]\ge[/mm] 0,5
>  
> Jedoch steht in der Lösung L=]2, [mm]\infty[,[/mm] was ja bedeutet,
> alle Zahlen größer als 2 und nicht größer oder gleich 2.
> Stimmt dann die Lösung im Buch nicht?


Wir müssen etwas genauer sein. Der Def. -bereich war [mm] \IR [/mm]  \  {-1,2}. Daher ist die Lösungsmenge = [mm] [\bruch{1}{2},2) \cup [/mm] (2, [mm] \infty) [/mm]

Die Lösung im Buch stimmt nicht. Du siehst z.B. durch einsetzen, dass 1 die Ungleichung erfüllt.

FRED


>  
> Wie sieht es mit meinen anderen beiden Lösungen für Aufgabe
> b und c aus, stimmen diese?
>  
> Danke,
>  itse


Bezug
                        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mi 22.10.2008
Autor: leduart

Hallo
Die Loesung im Buch ist unvollstaendig.
da die 2 nicht im def. gebiet liegt, kannst du die loesungsmenge auch nicht als [mm] [0,5,\infty[ [/mm] schreiben, sondern [0,5,2[ [mm] +[2,\infty] [/mm] dass die im buch falsch ist wenn nur der zweite Teil da steht, sieht man leicht, wenn du etwa in der urspruenglichen Ungleichung x=1 einsetzt. Dann ist sie erfuellt.
Gruss leduart

Bezug
        
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Mi 22.10.2008
Autor: itse

Hallo,

vielen Dank für die Antworten, dennoch wüsste ich sehr gerne, ob die Aufgaben b und c stimmen?

Gruß
itse

Bezug
                
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Mi 22.10.2008
Autor: leduart

Hallo
c und d sind richtig, bei d wuerd ich schreiben L=D
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]