Unschärferelation < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Ein ELektron ist in einem engen Käfig [mm] \Delta [/mm] x=L
a) Berechne die Unbestimmtheit für L=40 pm
b) zwischen welchen Werten ist der Impuls unbestimmt?
c) W=p²/(2m) Berechne die Mindestenergie des Elektrons in eV
d) ein Elektron hat die Energie 2eV. Wie muss L min. gewählt sein, damit sich das Elektron darin aufhalten kann? (berechne p!)
|
Hallo, ich muss zur Zeit meine letzte Physikklausur als Hausaufgabe berichtigen. Leider bin ich nach wie vor nicht in der Lage eine der Aufgaben zu lösen.
Teil a ist ja noch einfach über [mm] \Delta [/mm] p * [mm] \Delta [/mm] x [mm] \approx [/mm] h zu lösen, aber schon bei der b weiß ich nicht, was von mir verlangt wird.
Beim Aufgabenteil c bin ich jetzt etwas verwirrt, da ich die angegebene Formel vorher bereits herleiten musste und nun nicht so genau weiß, was passieren soll. Würde jetzt über p=h/(2L) zu W=h²/(8L²m) übergehen, aber wie gehts weiter?
d klärt sich dann bestimmt automatisch.
Ich bin für jede Hilfe dankbar!!
Rachel
|
|
|
|
Hi,
also ich würde die b) so verstehen, dass du, nachdem du in a) das [mm] \Delta [/mm] p berechnet hast, nun die absoluten p-Werte ausrechnen sollst, also die absoluten Grenzen für dieses [mm] \Delta [/mm] p. Dazu würde ich die Formel P = mv verwenden. v ist die Lichtgeschwindigkeit, die du aus der Formelsammlung entnehmen kannst, genauso wie die Masse des Elektrons. Damit hast du dann den Impuls errechnet, den das Elektron bei Lichtgeschwindigkeit hat. Da du aber nach Heisenbergscher Unschärferelation diesen nicht genau angeben kannst, musst du ein gewisses Delta an Toleranz zulassen: nämlich genau dieses [mm] \Delta [/mm] p, das du in a) berechnet hast. Also um die unterste Grenze des Impulses bei Lichtgeschwindigkeit zu berechnen, musst du [mm] p-\Delta [/mm] p rechnen. Für die obere Grenze gilt dann analog: [mm] p+\Delta [/mm] p. Damit weißt du jetzt, unter- und oberhalb welchen Grenzen der Impuls bestimmt ist.
Mit diesen absoluten Größen kannst du nun weiterrechnen. Bei der Aufgabe c) setzt du für p in der angegebenen Formel die unterste Grenze ein, weil du dem niedrigeren Impuls auch die niedrigere Energie gehört. So hast du beim minimalen Impuls auch die mindeste Energie.
Die d) erklärt sich dann, wie du sagst von selbst. Du nimmst die Formel aus c) und berechnest das absolute p daraus. Da die Energie 2eV vermutlich größer ist als die zuvor berechnete Mindestenergie, wird auch dieser Impuls größer sein als der in p berechnete obere Impulswert. Jetzt kannst du [mm] \Delta [/mm] E = 2eV - [mm] E_{min} [/mm] berechnen und dann aus der Formel [mm] \Delta [/mm] E = [mm] \bruch{(\Delta p)^2}{2m} [/mm] das [mm] \Delta [/mm] p ausrechnen. Dann noch mit Heisenberg das [mm] \Delta [/mm] x und schon hast du dein gesuchtes L.
Ich weiß nicht, ob das so stimmt, aber ich würde die Aufgabe so lösen. Nach meinem Verständnis würde ich es so sehen. Entdeckst du einen Fehler?
Hoffe, ich konnte dir ein bisschen helfen. Wenn nicht, schreib einfach nochmal.
Viel Glück weiterhin,
viele Grüße,
Stefan
|
|
|
|
|
Vielen Dank! Hat mir wirklich weiter geholfen. Fehler hab ich keinen gefunden. Ich gehe jetzt einfach davon aus, dass es stimmt.
Rachel
|
|
|
|
|
Cool, ich denke auch, dass es so stimmt. Freut mich, wenn ich dir helfen konnte.
Viel Erfolg,
liebe Grüße,
Stefan
|
|
|
|