matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieUntergitter
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Untergitter
Untergitter < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 Mo 13.05.2013
Autor: Tine90

Aufgabe
[mm] \paragraph*{Satz 4.5.1:} [/mm] Seien [mm] $\Lambda\subseteq\Gamma$ [/mm] Gitter im [mm] $\mathbb{R}^n$. [/mm] Dann ist

[mm] \frac{d(\Lambda)}{d(\Gamma)}=: D\in\mathbb{N} [/mm]

und das Gitter [mm] $D\Gamma=\{Da|a\in\Gamma\}$ [/mm] erfüllt [mm] $D\Gamma\subseteq\Lambda\subseteq\Gamma$.\\ [/mm]
[mm] \textbf{Beweis:} [/mm] Sei [mm] $B=(b_1,\dots,b_n)$ [/mm] eine Basis von [mm] $\Lambda$ [/mm] und [mm] $A=(a_1,\dots,a_n)$ [/mm] eine Basis von [mm] $\Gamma$. [/mm] Dann existiert eine ganzzahlige [mm] $n\times [/mm] n$-Matrix V mit $B=AV$. V erfüllt offensichtlich $D=|det(V)|$, weil [mm] $D=\frac{vol(\Phi_\Lambda)}{vol(\Phi_\Gamma)}$ [/mm] und das ergibt das Volumen des Gitters, das durch V aufgespannt wird. Die Restklassen von [mm] $\Gamma [/mm] ~mod~ [mm] \Lambda$ [/mm] werden zum Beispiel durch jene Gitterpunkte von [mm] $\Gamma$ [/mm] repräsentiert, die in einer Grundmasche [mm] $\Phi_\Lambda$ [/mm] von [mm] $\Lambda$ [/mm] liegen und man kann theoretisch durch einen Vergleich mit dem Volumen von [mm] $\Phi_\Gamma$ [/mm] bereits jetzt sehen, dass die Anzahl [mm] $[\Gamma [/mm] : [mm] \Lambda]$ [/mm] dieser Repräsentanten der Restklassen genau D ist. DA ist also die Basis von [mm] $D\Gamma$ [/mm] und nach der Cramerschen Regel (vgl. Satz 3.5) hat die Matrix [mm] $DV^{-1}$ [/mm] ebenfalls ganzzahlige Koeffizienten. Dann folgt aus [mm] $DA=B\cdot DV^{-1}$, [/mm] dass DL ein Untergitter von [mm] $\Lambda$ [/mm] ist. [mm] \qed [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo =)
Ich habe hier einen Beweis über Untergitter, den ich nciht wirklich verstehe und wäre für jeden Tipp dankbar. Also ich hab verstanden, dass man das Volumen von [mm] $\Lambda$ [/mm] durch das Volumen von [mm] $\Gamma$ [/mm] teilt und dass das Volumen von [mm] $\Lambda$ [/mm] größer ist als das Volumen von [mm] $\Gamma$. [/mm] Ich verstehe aber vor allem die Umformung am Schluss nicht...
Lg =)

        
Bezug
Untergitter: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Di 14.05.2013
Autor: hippias


> [mm]\paragraph*{Satz 4.5.1:}[/mm] Seien [mm]\Lambda\subseteq\Gamma[/mm]
> Gitter im [mm]\mathbb{R}^n[/mm]. Dann ist
>
> [mm] \frac{d(\Lambda)}{d(\Gamma)}=: D\in\mathbb{N}[/mm]
>  
> und das Gitter [mm]D\Gamma=\{Da|a\in\Gamma\}[/mm] erfüllt
> [mm]D\Gamma\subseteq\Lambda\subseteq\Gamma[/mm][mm] .\\[/mm]
>  
> [mm]\textbf{Beweis:}[/mm] Sei [mm]B=(b_1,\dots,b_n)[/mm] eine Basis von
> [mm]\Lambda[/mm] und [mm]A=(a_1,\dots,a_n)[/mm] eine Basis von [mm]\Gamma[/mm]. Dann
> existiert eine ganzzahlige [mm]n\times n[/mm]-Matrix V mit [mm]B=AV[/mm]. V
> erfüllt offensichtlich [mm]D=|det(V)|[/mm], weil
> [mm]D=\frac{vol(\Phi_\Lambda)}{vol(\Phi_\Gamma)}[/mm] und das ergibt
> das Volumen des Gitters, das durch V aufgespannt wird. Die
> Restklassen von [mm]\Gamma ~mod~ \Lambda[/mm] werden zum Beispiel
> durch jene Gitterpunkte von [mm]\Gamma[/mm] repräsentiert, die in
> einer Grundmasche [mm]\Phi_\Lambda[/mm] von [mm]\Lambda[/mm] liegen und man
> kann theoretisch durch einen Vergleich mit dem Volumen von
> [mm]\Phi_\Gamma[/mm] bereits jetzt sehen, dass die Anzahl [mm][\Gamma : \Lambda][/mm]
> dieser Repräsentanten der Restklassen genau D ist. DA ist
> also die Basis von [mm]D\Gamma[/mm] und nach der Cramerschen Regel
> (vgl. Satz 3.5) hat die Matrix [mm]DV^{-1}[/mm] ebenfalls
> ganzzahlige Koeffizienten. Dann folgt aus [mm]DA=B\cdot DV^{-1}[/mm],
> dass DL ein Untergitter von [mm]\Lambda[/mm] ist. [mm]\qed[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo =)
>  Ich habe hier einen Beweis über Untergitter, den ich
> nciht wirklich verstehe und wäre für jeden Tipp dankbar.
> Also ich hab verstanden, dass man das Volumen von [mm]\Lambda[/mm]
> durch das Volumen von [mm]\Gamma[/mm] teilt und dass das Volumen von
> [mm]\Lambda[/mm] größer ist als das Volumen von [mm]\Gamma[/mm]. Ich
> verstehe aber vor allem die Umformung am Schluss nicht...
>  Lg =)

Du solltest etwas praeziser fragen! Auf jeden Fall solltest Du Dir die Eigenschaften der Adjunkten (=transponierte Kofaktormatrix) einer Matrix anschauen, denn damit geht es ganz einfach: Ist naemlich $V'$ die Adjunkte zu $V$, so gilt naemlich $VV'= det(V) E$, $E$ Einheitsmatrix. Damit ist $BV'= AVV'= AD$, und danach Definition $V'$ wieder ganzzahlig ist,folgt damit, dass die Vektoren $AD$ ganzzahlige Linearkombination der Vektoren $B$ sind.

Bezug
                
Bezug
Untergitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 So 26.05.2013
Autor: Tine90

Ok, aber in meinem Beweis geht es doch um die Inverse Matrix [mm] V^{-1} [/mm] oder? Ich verstehe nicht, warum wir [mm] DV^{-1} [/mm] brauchen und wie man auf [mm] DA=BDV^{-1} [/mm] kommt oder was die Gleichung aussagt...Könntest du mir da noch einmal weiterhelfen?
Liebe Grüße,
Tine

Bezug
                        
Bezug
Untergitter: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mo 27.05.2013
Autor: hippias

Wie bereits erwaehnt: Ist $V'$ die Adjunkte zu $V$,so ist ganz allgemein $V'V= VV'= DE$, $E$ Einheitsmatrix. Dann folgt doch [mm] $V^{-1}= D^{-1}V'$, [/mm] weshalb das [mm] $DV^{-1}$, [/mm] das in Deinem Beweis benutzt wird, nichts anderes als meine Adjunkte $V'$ ist, die nach Definition ganzzahlig ist, weil $V$ ganzzahlig ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]