matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUntergruppen der S4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Untergruppen der S4
Untergruppen der S4 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen der S4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Fr 23.11.2007
Autor: rainman_do

Aufgabe
Bestimmen Sie alle Untergruppen der symmetrischen Gruppe [mm] S_4 [/mm]

Hallo.....ja schöne umfangreiche Aufgabe, zu der ich eine kleine Verständnisfrage habe:

Also ich hab erstmal alle möglichen Permutationen notiert:
id
(12),(12),(14),etc.
(123,(321),(124),(421),etc.
(1234),(4321),etc.

Nach dem Satz von Lagrange gibt es Untergruppen der Ordung 2,3,4,6,8 und 12, da die [mm] S_4 [/mm] 4!=24 Elemente hat. Nun meine eigentliche Frage:

Untergruppen der Ordnung 3 sind ja z.B. {id,(123),(321)}, aber ist z.B. auch {id,(12),(23)} eine Untergruppe dritter Ordung? Ich bin mir nicht sicher ob das nun abgeschlossen ist oder nicht, denn vernküpft man (12) und (23) erhält man (13), das ist kein Element der (vermeintlichen) Untergruppe...lieg ich da richtig, oder hab ich da einen Denkfehler?
Gibt es unter Umständen eine Möglichkeit herauszufinden, wieviele Untergruppen es mit der jeweiligen Ordnung gibt?

Vielen Dank im Voraus

        
Bezug
Untergruppen der S4: Antwort
Status: (Antwort) fertig Status 
Datum: 01:26 Sa 24.11.2007
Autor: komduck

{id,(12),(23)} ist keine Untergruppe,weil (12)(23) nicht in dieser Menge liegt.
(12)(23) = (123) nun muß man (123) mit alle Elementen muliplizieren
um festzustellen ob man noch weitere Elemente erhält.
Bei der Aufstellung der Untergruppen, würde ich noch dazu sagen
welche Untergruppen isomorph sind. Es gibt hier Untergruppen die
isomorph zur [mm] Z_{4} [/mm] und andere die isomoph zur Kleinsche Vierergruppe = [mm] Z_{2} \times Z_{2} [/mm] sind. Bei den sechselementigen gibt es auch verschiedene.
Es gibt einen Satz der Gruppetheorie mit dem man beweisen kann das die
achtelementigen alle isomorph sind.

Komduck

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]