Untermannigfaltigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:50 So 16.01.2011 | Autor: | sally99 |
Aufgabe | Gegeben sind die durch [mm] f_1(x)=(x_1)^2+x_1*x_2-x_2-x_3 [/mm] und [mm] f_2(x)=2*(x_1)^2+3*x_1*x_2-2*x_2-3*x_3 [/mm] definierten Funktionen [mm] f_j:\IR^3 [/mm] -> [mm] \IR [/mm] und [mm] K=\{x \in \IR^3 | f_1(x)=f_2(x)=0}
[/mm]
Zeige, dass K eine eindimensionale Untermannigfaltigkeit des [mm] \IR^3 [/mm] ist |
Hallo ihr alle!
Ich versuche gerade obige Aufgabe nachzuvollziehen.
Da steht nun, dass [mm] grad(f_1(x))=\vektor{2x_1+x_2 \\ x_1-1 \\ -1} [/mm] und [mm] grad(f_2(x))=\vektor{4x_1+3x_2 \\ 3x_1-2 \\ -3} [/mm] in jedem Punkt von K linear unabhängig sind.
Das heißt doch, dass ich die Matrix aus beiden Vektoren in die Zeilenstufenform bringen kann. Problem ist aber, dass ich eine Nullzeile bekomme
[mm] \pmat{x_1- 1 & 3x_1-2 & |0 \\ 0 & 1 & | 0 \\ 0 & 0 & |0}.
[/mm]
Also habe ich die letzte Komponente, da sie ja von x,y,z unabhängig ist, mal missachtet und komme auf die Matrix [mm] \pmat{x_1- 1 & 3x_1-2 & |0 \\ 0 & 1 & | 0}.
[/mm]
In beiden Fällen habe ich den Rang 2. Das heißt aber doch, dass K 2-dimensional ist... Was übersehe ich?
Wäre dankbar für eure Hilfe!
Viele Grüße sally99
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:02 Do 20.01.2011 | Autor: | rainerS |
Hallo sally99!
> Gegeben sind die durch [mm]f_1(x)=(x_1)^2+x_1*x_2-x_2-x_3[/mm] und
> [mm]f_2(x)=2*(x_1)^2+3*x_1*x_2-2*x_2-3*x_3[/mm] definierten
> Funktionen [mm]f_j:\IR^3[/mm] -> [mm]\IR[/mm] und [mm]K=\{x \in \IR^3 | f_1(x)=f_2(x)=0}[/mm]
>
> Zeige, dass K eine eindimensionale Untermannigfaltigkeit
> des [mm]\IR^3[/mm] ist
>
> Hallo ihr alle!
>
> Ich versuche gerade obige Aufgabe nachzuvollziehen.
> Da steht nun, dass [mm]grad(f_1(x))=\vektor{2x_1+x_2 \\ x_1-1 \\ -1}[/mm]
> und [mm]grad(f_2(x))=\vektor{4x_1+3x_2 \\ 3x_1-2 \\ -3}[/mm] in
> jedem Punkt von K linear unabhängig sind.
>
> Das heißt doch, dass ich die Matrix aus beiden Vektoren in
> die Zeilenstufenform bringen kann. Problem ist aber, dass
> ich eine Nullzeile bekomme
> [mm]\pmat{x_1- 1 & 3x_1-2 & |0 \\ 0 & 1 & | 0 \\ 0 & 0 & |0}.[/mm]
Du hast doch nur zwei Vektoren, also zwei Unbekannte, aber drei Gleichungen. Du kannst also höchstens Rang 2 bekommen.
> Also habe ich die letzte Komponente, da sie ja von x,y,z
> unabhängig ist, mal missachtet und komme auf die Matrix
> [mm]\pmat{x_1- 1 & 3x_1-2 & |0 \\ 0 & 1 & | 0}.[/mm]
>
> In beiden Fällen habe ich den Rang 2. Das heißt aber
> doch, dass K 2-dimensional ist... Was übersehe ich?
Du hast ausgerechnet, dass die Jacobimatrix der Nebenbedingungen den Rang 2 hat.
Rang 2 bedeutet: Für jedes x sind es sind zwei linear unabhängige Vektoren, die spannen die jedem Punkt x einen zweidimensionalen Unterraum des [mm] $\IR^3$ [/mm] auf. Also ist die Dimension von K die Differenz der Dimension des [mm] $\IR^3$ [/mm] und der Dimension dieses Unterraums: 3-2=1.
Viele Grüße
Rainer
|
|
|
|