matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenUntermannigfaltigkeiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Untermannigfaltigkeiten
Untermannigfaltigkeiten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeiten: Erklärung
Status: (Frage) überfällig Status 
Datum: 20:11 Mo 07.12.2009
Autor: bobobanane

Aufgabe
Zeige, dass die Eiheitssphäre in [mm] R^3 S^2:={(x_{1},x_{2},x_{3})|x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1} [/mm] eine [mm] C^{1}-Untermannigfaltigkeit [/mm] der Dimension zwei ist.
Zeige, dass die Beiden Abbildungen [mm] Phi_{N,S}:R^{2} [/mm] nach [mm] R^{3}, [/mm]
[mm] Phi_{N}(x_{1},x_{2})=2/(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}) (x_{1},x_{2},-1)+(0,0,1). [/mm]
[mm] Phi_{S}(x_{1},x_{2})=2/(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}) (x_{1},x_{2},1)+(0,0,-1). [/mm]
einen Atlas Bilden.

Diese Aufgabe wurde bei uns in der Vorlesung vorgerechnet, leider war ich an dem Tag nicht da und die Mitschriften meiner Komilitonen helfen mir da leider auch nicht weiter.
Ich weiß, dass ich für den Nachwei einer Untermannigfaltigkeit einen Homoömorphismus zwischen allen offenen Umgebungen von [mm] S^{2} [/mm] und [mm] R^{3} [/mm] finden muss. Diese werden wahrscheinlich die Phis sein.
Aber ich habe keine Ahnung was ein Atlas sein soll.
Kann mir jemand zweigen wie man das alles sauber aufschreibt?

Danke im Voraus
Bobo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Untermannigfaltigkeiten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 11.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]