matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUnterraum von 2x2 Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum von 2x2 Matrizen
Unterraum von 2x2 Matrizen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum von 2x2 Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:48 Mo 19.10.2009
Autor: itse

Aufgabe
Die Matrix A = [mm] \begin{bmatrix} 2 & -2 \\ 2 & -2 \\ \end{bmatrix} [/mm] ist ein Vektor im Raum M aller 2x2-Matrizen. Benennen Sie den Nullvektor dieses Raums, sowie die Vektoren [mm] \bruch{1}{2}A [/mm] und -A. Welche Matrizen bilden den kleinsten Unterraum von M, dem auch A angehört?

Hallo Zusammen,

der Nullvektor bzw. Nullmatrix = [mm] \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \end{bmatrix} [/mm]

[mm] \bruch{1}{2}A [/mm] =  [mm] \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ \end{bmatrix} [/mm]

-A =  [mm] \begin{bmatrix} -2 & 2 \\ -2 & 2 \\ \end{bmatrix} [/mm]


M sind ja alle 2x2 Matrizen, diese Matrizen müssten doch den kleinsten Unterraum von M bilden, dem auch A angehört:

[mm] \begin{bmatrix} 2 & -2 \\ 2 & -2 \\ \end{bmatrix} [/mm]

[mm] \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \end{bmatrix} [/mm]

[mm] \begin{bmatrix} -2 & 2 \\ -2 & 2 \\ \end{bmatrix} [/mm]

?

Gruß
itse

        
Bezug
Unterraum von 2x2 Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Mo 19.10.2009
Autor: Al-Chwarizmi


> Die Matrix A = [mm]\begin{bmatrix} 2 & -2 \\ 2 & -2 \\ \end{bmatrix}[/mm] ist ein
> Vektor im Raum M aller 2x2-Matrizen. Benennen Sie den
> Nullvektor dieses Raums, sowie die Vektoren [mm]\bruch{1}{2}A[/mm]
> und -A. Welche Matrizen bilden den kleinsten Unterraum von
> M, dem auch A angehört?
>  Hallo Zusammen,
>  
> der Nullvektor bzw. Nullmatrix = [mm]\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \end{bmatrix}[/mm]
>  
> [mm]\bruch{1}{2}A[/mm] =  [mm]\begin{bmatrix} 1 & -1 \\ 1 & -1 \\ \end{bmatrix}[/mm]
>  
> -A =  [mm]\begin{bmatrix} -2 & 2 \\ -2 & 2 \\ \end{bmatrix}[/mm]
>  
>
> M sind ja alle 2x2 Matrizen, diese Matrizen müssten doch
> den kleinsten Unterraum von M bilden, dem auch A
> angehört:
>  
> [mm]\begin{bmatrix} 2 & -2 \\ 2 & -2 \\ \end{bmatrix}[/mm]
>  
> [mm]\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \end{bmatrix}[/mm]
>  
> [mm]\begin{bmatrix} -2 & 2 \\ -2 & 2 \\ \end{bmatrix}[/mm]
>  
> ?
>  
> Gruß
>  itse


Hallo itse,

man müsste noch wissen, welches der Grundkörper
sein soll. Ich nehme einmal an, das sei [mm] \IR. [/mm]
Dann muss der kleinste Unterraum U, der A enthält,
auch alle reellen Vielfachen von A enthalten.

    [mm] U=\left\{\begin{bmatrix} r & -r \\ r & -r \\ \end{bmatrix}\ \ ;\quad r\in\IR\right\} [/mm]


LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]